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1. INTRODUCTION.

This report overviews the results of our research over the duration of the project; detailed

discussions of most results are included in the technical papers appearing as Appendices A-D. As

originally proposed, resource contention problems were decomposed into system-level and node-

level. At the system level, we have performed two main tasks: first, a comparative study of simple

load-sharing schemes in distributed real-time systems, and second, development of actual

algorithms to be implemented in practical systems. This work is reported in sections 2 and 3

respectively. At the node level, our objective has been to consider scheduling policies under real-

time constraints. During the course of our work, it became apparent that nodes are often

multiprocessors, where parallelism in task execution is possible. Thus, we have also focused on

this issue, and obtained the results reported in section 4. Overall, our work has resolved many of

the problems identified in the original proposal, qs well as generated new ones. In some cases,

there are useful extensions of our results which can oe obtained in the future, given the framework

created in this project.

Appendices A-D included in this report are technical papers which have already appeared or

have been submitted to journals or to conference proceedings.

2. LOAD SHARING IN SOFT REAL-TIME DISTRIBUTED SYSTEMS.

A major focus of our research during the past contract year has been on high-level load sharing

(LS) schemes for a class of distributed applications which are subject to soft real-time constraints.

In such real-time systems, jobs generated at a node in the distributed system must complete

execution within a specified amount of time after their initial arrival to the system; otherwise they

are considered lost. Examples of systems exhibiting such soft real-time behavior include the

general class of applications in which a process may spawn a number of subprocesses and then,

after a fixed amount of time, must make a decision based on the results of the subprocesses which

were able to execute (e.g., a distributed sensor system, in which multiple hypotheses are to be

3



generated and evaluated). A second application is in distributed industrial process control, where a

failure to complete a computation within a specified time constraint (due to a momentary overload

of work at a given node) may require the initiation of an expensive recovery procedure.

In these soft real-time systems, the primary performance metric is the maximization of the

percentage of jobs completed within their specified time constraint. Our research on real-time LS

algorithms has been based on the premise that simple real-time LS policies may perform as well as

their more complex counterparts. It has been previously noted that for non-real-time systems,

relatively simple decentralized policies may often provide effective load sharing in a distributed

system [1]. These works have motivated our work during the past year, which establishes

complementary results for the case of real-time systems, systems having performance requirements

and evaluation metrics which differ significantly from those of non-real-time systems. We stress

that, as in [1], the goal of the research reported in this section has not just been to propose any

specific real-time load sharing algorithm nor to necessarily develop performance models for

predicting the absolute performance of specific LS approaches, but rather to address the more

fundamental question of the level of complexity required to implement effective load sharing, in

this case in a distributed real-time environment

2.1. System Models and Protocols

Our model of a distributed system consists of N nodes which are interconnected through a

communication network; the network is asiumed to be logically fully connected in that every node

can communicate with every other node. A stream of jobs is submitted locally to node i. We

assume that the nodes are heterogeneous in the sense that each node may have a different arrival

rate of externally submitted jobs, but homogeneous in the sense that a job submitted at any node in

the network can be processed at any other node in the network; this latter assumption can be easily

relaxed.

We are interested in studying LS policies in a soft real time system, in which a job is lost ij it
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can not complete or begin execution (as the case may be) within a given time constraint.If the

deadline cannot be met locally, a LS algorithm may be invoked to transfer the job to another node

which can possibly meet the job's demands. We assume that a job cannot be transferred more than

once in order to avoid the problem of "trashing" and assume that a constant delay, d, (representing

communication and transfer processing delays) is required to transfer a job from one node to

another. Thus, if a job first arrives at node i with an initial time constraint of K1 and is transferred

to another node j for processing, its new time constraint at node j will be equal to (Kl-d).

Our research has examined two simple approaches:

1. quasi-dynamic load sharing QDLS

2. probing

which have been previously studied for non-real-time systems, and compares their real-time

performance with that of the bounding cases of no load sharing and the theoretically optimum real-

time LS algorithm.

A LS approach can be characterized by its transfer policy, and its

location policy. The transfer policy determines a job should be trans-

ferred for remote execution. The location policy, determines where

(i.e., at which remote node) a transferred job will be executed.

Both QDLS and probing have the same simple transfer policy:

Transfer policy (QDLS and probing):

A job is transferred from node i to a remote node if and only if the unfinished workload of the

jobs currently at node i exceeds the time constraint for the job. A job will thus either queue for

service at the node at which it initially arrives (in which case it will be guaranteed execution) or

will be transferred to some remote node. We note that the transfer policy decision is made

dynamically, based on the current state of the node. There are no previous analytic studies

which have considered this transfer policy in a real-time environment.

The location policies of QDLS and probing are:

Location policy (QDLS):
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If a job is to be transferred, a remote "target" node (to which the job is sent) is chosen

probabilistically and independent of the current state of the remote nodes. Note that QDLS

requires no non-local, dynamic state information. Although this location policy has been

extensively studied for the non-real-time case, no previous analytic work has addressed this

problem in a real-time environment.

Location policy (probing):

When a job is to be transferred a node probes some specified number of other system nodes

(chosen at random) to determine if one of them can currently guarantee execution of this job,

i.e., has an amount of unfinished work less than the time constraint of the job minus the

transfer delay. A node may probe up to some maximum number, l,, (the probe limit) of other

nodes. If none of the probed nodes can execute the job, the job is lost. We note that probing

may be considered a simplified form of bidding [2]. The probing policy studied here was first

analytically examined in [1] (for non-real-time systems) and we follow their methodology

when studying the system-level model (but not the node-level model) of probing.

2.2. Overview of Comparative Study Results.

In the course of our research, analytic performance models were developed to study the

performance of the QDLS and LS approaches, as well as the case of no load sharing. The case of

the theoretically optimum LS algorithm was examined through simulation. The details of the

analysis are presented in Appendix A of this report.

Figure 1, which is discussed in additional detail in [3] (also Appendix A) shows representative

performance results for the QDLS and probing real-time load sharing schemes and compares their

performance with that of the ideal case of perfect-information load sharing and the case of no load

sharing (NLS). In this case, jobs were required to begin execution within the specified time

constraint or were otherwise lost. The performance results for the case in which jobs must

complete execution within the time constraint showed similar behavior and are .. so discussed in
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detail in [3].

The results are for a 20 node system in which the average job execution time was I job/second

(exponentially distributed) and a network job transfer delay of d = 0.2 secs. The "ideal" case was

modeled as an M/M/20 queueing system with a time constraint of KI. We note that in the MJM/20

system, jobs are scheduled to available processors using complete information about the svsteii

state and incur no transfer delay. Thus, the "ideal" performance bounds shown in the subsequent

results are, in reality, unattainable. We also note that simulations were performed to validate our

analysis. The simulations were performed without many of the assumptions required by the

analysis; we note that the close correspondence between our simulation and analytic results indicate

that reasonable modeling assumptions and approximations were made in the development of our

analytic model of probing.

time constraint = 5
network delay 0.1

0.6r

0.5
F
r

0.4

ti no load sharing
.0.3 n unachievable theoretical

: 0-best 
pifutmance

0
0.1-/

0.0 0.2 0.4 0.6 0.8 1.0 .2 1.4 1.6

a simple approach using Average Load " --achievable performance region

increasing amounts of for any more complex approach
infu1 .1l iL O

Figure 1: Performance of the Probing Policy for L, = 1, 3, 5 under a symmetric load
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The real-time performance of the QDLS and probing approaches is demonstrated in Fig. 1 for

probe limits, LP = 1, 3, 5; the case of Lp=l corresponds to the QDLS policy. As expected the

performance of probing approaches the ideal limit as L. increases. Note, however, that a relatively

small probing limit (LP=5 when K1--0.5 (an extremely tight time constraint) and LP=3 when

K 1=5.0), results in a real time performance extremely close to the unachievable upper bound. Also

note that increasing the probing limit beyond a relatively small number can result at best in only a

marginal performance improvement. We may conclude then that since additional probing beyond

some small probe limit incurs additional overhead, a relatively small probe limit would be sufficient

in practice to implement effective real time load sharing.

Perhaps more importantly, Fig. 1 provides a quantitative basis for addressing the question of

determining the appropriate level of complexity for LS algorithms. We note that a more complex

approach can at best achieve a performance level falling in the gap between our probing results and

the theoretical optimum. For system parameters of practical interest (i.e., a system loading less

than the physical capacity of the system and time constraints on the order of the service time of a

job), this gap can been seen to be quite small. If the overhead we have not modeled is to be

considered, the small performance difference between probing and a more complex approach,

which requires additional communication and computational overhead, can only become smaller.

The most important conclusion then to be drawn from Fig. I and our additional results

discussed in Appendix A is that for a relatively wide range of system parameters, the simple

approaches studied perform significantly better than the case of no load sharing and often perform

remarkably close to that of the theoretically optimum algorithm. Our conclusion thus complements

previously-established results for LS in non-real-time systems [1]: very simple approaches, which

use only a minimal amount of state information and have an extremely simple decision-making

process (and hence are simple to implement) are often sufficient to provide effective load sharing in

a distributed real-time computer system. A corollary then is that for all but the tightest of time

constraints (e.g., values of the time constraint, Kl, less than the average job service time), a more
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sophisticated approach towards real-time load sharing can often result in only a small marginal

performance improvement over the extremely simple load sharing algorithms.

3. ADAPTIVE LOAD SHARING ALGORITHMS IN REAL-TIME DISTRIBUTED

PROCESSING SYSTEMS.

As in the previous section, our concern here is with distributed processing systems where jobs are

constrained by real-time deadlines. Thus, the performance objective is to minimize the fraction of

jobs that are lost due to exceeding their deadline. Our interest now, however, is in actually

developing adaptive algorithms, which can be incorporated into the system itself, and perform load

sharing on-line. First, let us identify three desired features for the practical applicability of such

algorithms:

1. Load sharing schemes should be sufficiently simple so as to incur little overhead and

communication costs.

2. Stochastic modeling assumptions regarding the nature of job arrival and service processes

should be minimized or eliminated.

3. The algorithms should require little or no information about the parameters of the

distributed processing systems (since these parameters may be hard to estimate in practice,

as well as subject to changes).

As we shall describe below, the algorithms we have developed and investigated have been

designed so as to satisfy these requirements.

Note that load sharing algorithms can be categorized in terms of their execution mode

(centralized or decentralized), and information structure (static or dynamic). A static decentralized

algorithm satisfies the simplicity requirement, since it can be executed at each node separately and

with no instantaneous state information. One, however, should expect dynamic algorithms to

perform better; hence, it is important to study the tradeoff between simplicity (no state information)

and performance.

To address the second and third requirement above, our goal has been to exploit developments

9



in sample-path-based sensitivity analysis techniques within the context of our problem (e.g. [41-

[6]). In particular, we have used the Perturbation Analysis (PA) methodology, and have sought to

obtain extensions and generalizations that are applicable.

In section 3.1 below, we present a static decentralized algorithm we have developed to solve

the load sharing problem with real-time constraints. The approach is similar to the one used in

problems with no real-time constraints (e.g. [7]). In section 3.1.1 we outline the algorithm, and in

section 3.1.2, we describe the PA estimation procedure required in implementing this algorithm. In

section 3.2 we include simulation results illustrating the performance of our algorithm. In section

3.3, we discuss extensions of the algorithm, including a dynamic version making use of state

information. To actually develop such an algorithm, however, we have to derive extensions of our

estimation procedures to accomodate discrete (integer-valued) parameters. We outline in section

3.4 the work we have done along those lines.

3.1. A Static Decentralized Adaptive Load Sharing Algorithm.

As in section 2.1, a distributed processing system with N processors is modeled as a network,

with each node representing a processor. The flow of jobs arriving at node i is denoted by -i,

i=l,...,N. The key idea of load sharing is to provide a control mechanism at each node i, so as to

allocate the flow X over all nodes. Thus, when a job is received at node i, two decisions are made:

1. Transfer decision: to keep the jcb at i or send it to some other node.

2. Location decision: to determine the node j i where the job should be sent (if the transfer

decision is not to keep the job at i).

For simplicity, we assume that every node can communicate with every other node (however,

this assumption can be easily relaxed). We will also initially assume that the communication delay

in transfering a job is negligible (this assumption can be relaxed in the future).

Figure 2 shows the model of node i we will use. The responsibility of the "control" function is

to split the flow Xi into flows xij, xij>O. Thus, jobs actually queued at node i for processing may
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originate at any one of the locations indexed by i=l,...,N. In our model, there is a deadline tk

associated with the kth job for all k=1,2,... If wk represents the waiting time of the kth job, then

the job is considered "lost" if Wk > 'k, i.e. it is rejected from the system and is not processed. The

flow of lost jobs at node i is denoted by LI, and will be referred to as the loss rate at i (in jobs/sec).

from j=1,....,N XJi

" CONTROL Xi L --: °s

~jobs
[ ij ' to J=I"'".N

Figure 2: Node i Model

The objective of the load sharing algorithm is to determine the flows xij for all ij = 1,...,N, so

as to minimize the fraction of lost jobs in the overall system (i.e. the probability that a job violates

its real-time constraint). Let PL denote this fraction, and note that if a total of M jobs were

observed, then the corresponding fraction PL(M) can be expressed as:
N

PL(M) =

where MiL is the number of lost jobs observed at node i. Equivalently, if we fix an observation

interval to be of length T, then we can write:
N r

PL(T) =
i=l

By letting T--*-, (M/T) becomes the total job flow into the system, denoted by f, and (MiL/T)

becomes the loss rate at node i, defined above as Li.Thus, we get:
N

PL=  -I(1)
i=1
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and since f is the fixed total system load, the algorithm must minimize the sum of loss rates over all

processors. Thus, assuming the load at each node is given as fi, the problem can be stated as

follows:

determine X11 , x12, .. ,X. xj.. ,XNN so as to minimize:

N

SLi(xli, .XNi)

i=lI

S.t. xij > 0 for all i,j = 1,...,N - (2a)

N
I xij=fi for alli=1,...,N - (2b)

j=1

Using standard results from optimization theory, one can show that the necessary conditions

for solving this problem are the following:

= Ivi if Xij > 0 - (3a)

> Xvi if xij = 0 - (3b)

for all ij=l ,... ,N, where x4i is some constant to be determined. The derivative L/axij represents

the sensitivity of the loss rate at node j with respect to a change in the flow xij. This is also referred

to as the marginal or incremental loss rate at node j with respect to jobs coming from i. From node

i's point of view, the interpretation of these conditions is as follows: the job flows xij (allocated by

i) must be set so that all marginal loss rates are equal, provided xij>O; if xij=O, then the

corresponding marginal loss rate must be higher (i.e. node j is a particularly bad node). An

algorithmic implementation can now be easily derived, whereby each node gradually adjusts its job

flow allocations until conditions (3a), (3b) are satisfied. The crucial information required for the

execution of such an algorithm consists of the marginal loss rates above.

Before describing the distributed algorithm, note that the number of marginal loss rate estimates

needed is actually only N. To see this, let:
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N
[J=E xij, j= ..,

i=l

and observe that:

aLj aLj fj Lj
xij = J j= 1 ...j N

which represents the sensitivity of the loss rate at node j with respect to the total incoming job flow

13j. This simplification holds as long as Lj is a function of 13j and not the N individual flows xij,

i.e. as long as these flows are indistinguishable at node j.

3.1.1. Distributed Algorithm Description.

First, note that rather than controlling Xij at node i, we can define routing variables:

i= L, 0:5 j<xiI
iT

representing the fraction of job flows that node i allocates to j, j=l, ... ,N.

Next, let us define the following useful quantities:

a- =rain J -(L4)

(aLl

j~l.. "jJ -(4

aj =[ Lj  a] -(5)

Aij mrain {i, rI} a-(6)

where:

* a is the minimum marginal loss rate over all nodes. The corresponding node is denoted by

kmin , and stands for the "best" node under the current load allocation, i.e. the best

candidate for sending additional jobs to (since this node's loss rate will increase the least).

" aj is the difference between the marginal loss rate at node j and the "best" marginal loss

rate. Note that if kmin= j, then aj= 0.

SAij represents the adjustment to be made to Oij, based on current information. The quantity
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T1 is called the step size of the algorithm, and regulates the amount of adjustment to be made

at each iteration.

The precise algorithm execution is the following:

1. Initialize routing variables O0, ij = 1,...,N.

2. Wait for some observation period Tm, m = 1,2,...

3. Iteration m, m = 1,2,...:

3.1. Each node j estimates: -, j = 1,...,N (see next section).

3.2. Each node j sends - to every other node i#j.

3.3. Each node i determines a, kmin, aij, and Aii (defined above).

3.4. Each node i updates its routing variables j j = 1,...,N:

J -Aij, j;kmin

M+1 I(~
ij= -(7)

I *T + Aik, j=kmin

4. Repeat steps 2 and 3.

The issue that remains is the estimation of the marginal loss at each node in step 3.1.

3.1.2. Marginal Loss Estimation.

Returning to the node model in Fig.2, we now address the question: how can we estimate the

sensitivity of Li with respect to the total incoming flow 13 ? We will restrict ourselves here to one

approach which allows this process to be done on-line, based on the Perturbation Analysis (PA)

methodology.

Consider a node in isolation, and let arriving jobs be indexed by k=1,2,... Let ak denote the

arrival time of the kt job, dk its departure time, and wk its waiting time in the queue. Furthermore,

suppose each job is assigned a processing time denoted by 1tk for the kth job. In our model, if wk
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> t k the job is lost (Tk is the deadline for the job). Thus, if Sk is the actual service time the system

provides this job, we can write:

nk, if wk < rk
Sk={}

0, otherwise

It is easy to see that the departure time satisfies the following recursive equation:

dk = max (dk-1, ak) + Sk, k=1,2,... - (8)

Similarly, since dk = Wk + Sk, the waiting time satisfies:

Wk = max (Wk.1 + Sk.1 - Ak, 0), k=1,2,... - (9)

where Ak is the kth interarrival time defined by Ak = ak - ak.. Note that wk = 0 whenever the kth

job terminates an idle period at the processor. Defining:

Ik = ak - dk1 = Ak - Wk-l - Sk-1 -(10)

note that the duration of an idle period is given by Ik provided Ik > 0 in (10).

Now let the incoming flow P3 be perturbed by some amount 8[3. Equivalently, the mean

interarrival time of jobs a=l/p3 is perturbed by an amount 8a. Thus, all interarrival times are

perturbed by some amount BAk which is easily obtained from 8 depending on the job interarrival

time distribution. This causes perturbations 8wk in the waiting times Wk. These perturbations, in

turn, may affect the service times Sk. To understand this perturbation process in more detail, note

that in a perturbed stochastic realization, (9) becomes:

W'k = max wk-4 + S'k-I - A'k, 0) , k=1,2.... - (11)

where w'k = w k + 8w k, S'k =S k + 8 S k, and A'k = Ak + 8Ak. Similar to (10) we can also define

'k as follows:

r k = Ak + 8Ak - Wk.1 - 8 Wki- Sk_. - 8Sk 1  -(12)

Our goal now is to determine recursive expressions for 8 wk and 8 Sk combining the equations

above. As long as these expressions depend only on quantities which are directly observable while
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the system is in operation, one can always predict on-line the effect of a flow perturbation.

Following some algebraic manipulations, we get:

0 if Ik > 0, r'k> 0

w Wk I + SSk_ -- (Ik + SAk) if Ik > 0, rk : 0 -(13)

8 Wk_1 + 5 Sk_1 - 5 Ak if Ik 5 0, 'k > 0

' k  if Ik:5 0, I k > 0

J k if Wk > Tk, 8Wk - Tk-Wk

8Sk - k if Wk Tk, Wk Sk Tk--Wk -(14)

0 otherwise

where it is important to observe that 8w k and 5 Sk are evaluated based on known information: SWk

and SSk are the iteration variables (initialized to 0); rk and 7Ek are given for every job; Ik is obtained

from (10); 5Ak is computed based on the flow perturbation of interest and the interarrival time

distribution; and I'k is obtained from (12) using known values.

From a computational standpoint, the procedure for obtaining Sw k involves only simple

arithmetic and comparisons, as shown in (13), (14). In addition, it is assumed that all arrival time

information is stored with the job (time stamping). The only additional burden is the need to save

prior service time information 8Sk.1 in evaluating Swk.

Of course, our ultimate objective in the distributed load sharing algorithm is to estimate

derivatives of the form DL/a3, where L is the loss rate at the standalone processor model we have

considered here. Given SWk, however, this is a relatively simple task. Let MkL be the number of

lost jobs after k jobs have been served (either actually processed or rejected), and let 5MkL the

perturbed value due to 5(3. We can now evaluate 8MkL on-line as follows:

5ML_ i if Wk > Tk, SWk:5 <k-Wk

k 5M+ 1 if wk -< Tk, 5wk < Tk-Wk -(15)

0 otherwise

Finally, an estimate of the derivative aLI9(3 is given by:
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dk 8P

where dk defines the length of the observation period on which the estimate is based, SP is

sufficiently small, and 8MkL is obtained from (15), using (13) and (14) to evaluate Bwk.

3.2. Simulation Results.

In this section, we present results from the algorithm implementation on simulated distributed

processing systems. Our objectives here are:

* to demonstrate the convergence of this load sharing algorithm, both for simple models

(where analytical solutions may be found), and more complex ones (for which analytical

solutions are not available).

* to demonstrate the adaptive nature of the algorithm, where flows are automatically adjusted

in response to drastic changes in the system's operating conditions.

• to study the effect of the two parameters affecting the performance of this algorithm: the

step size Ti, and the observation period length T, which defines the points where flow

adjustments are made.

In the results that follow, we denote by Ai and Si the arrival and service process characteristics at

node i. We also denote by Ci the deadline (waiting time constraint) distribution. For instance, A2:

EXP(1.0) indicates that the interarrival times at node 2 are exponentially distributed with mean 1.0;

C1:CO(2.0) indicates that all jobs submitted to node 2 have a constant deadline fixed at 2.0 sec.

In the first few cases studied, we have considered a four-node system and examined the

following cases.

Case 1: A1 , A2, A3 , A4 : EXP(1.0)

S1: EXP(l.0), S2 , S3, S4 : EXP(4.0)

C 1, C2 , C3 , C 4 : CO(2.0)

In Fig. 3, for a fixed observation period of length T, defined by 30,000 jobs per iteration, we
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show how the performance (in terms of fraction of lost jobs) improves as a function time and

convergence is attained, provided the step size rl is sufficiently small. Note the instability resulting

at i1=5.Ox10- 1. In Fig. 4, we study the effect of observation period length for a fixed step size

i1=5.0x1O- 2 . For the case of 1,000 jobs per iteration only, performance initially tends to the

optimum very rapidly; subsequently, however, the loss fraction experiences oscillations due to the

high variance of the marginal loss estimates.

Case 2: A1, A2, A3. A4: EXP(1.0)

S1 : EXP(1.0), S2 , S3, S4 : EXP(4.0)

C1, C2, C3, C4: UN[1.5,2.5]

The only change here is in the deadline distribution: deadlines are now drawn from a uniform

distribution in [1.5,2.5] (mean deadline is the same). Results are shown in Fig. 5, with Tl=5.0x10"

2 and 20,000 jobs per iteration. Note that the loss fraction converges around 0.60 as before.

Case 3: A1 , A2, A3, A4 : EXP(1.0)
SI: UN[0.5,1.5], S2 , S3 , S4: UN[3.5,4.5]

C1, C2, C3, C4 : CO(2.0)

In Fig. 6, we show algorithm convergence with Tl=5.Ox 10-2 and 20,000 jobs per iteration. In this

case, however, node service times are bounded through uniform distributions. It is still possible to

obtain analytical expressions for loss rates in this system; however, our aim here is simply to

demonstrate the validity of our estimation procedure, which does not require any change compared

to the previous models.

Case 4: A1 , A2, A3 , A4 : UN[0.5,1.5]

SI: UN[0.5,1.5], S2, S3, S4 : UN[3.5,4.5]

C1, C2, C3, C4: CO(2.0)

This is similar to Case 3, except for the interarrival time processes, which are also uniform. No

analytical expressions are availhle for such node models. Results with Tl=5.0xl0 -2 and 20,000

jobs per iteration are shown in Fig. 7.
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Case 5: A,: U-'.[0.5,1.5], A2: EXP(4.0), A3 : CO(5.0), A4 : DP(3.0,0.8; 8.0,0.2)

S1 : UN[0.5,1.5], S2 , S3, S4 : UN[3.5,4.5]

C1, C 2, C3, C4 : CO(2.0)

In this case, arrival processes are quite different at each node. At node 4, we have a discrete

probability distribution, i.e. the interarrival time is 3.0 with probability 0.8 and 8.0 with

probability 0.2. Once again, we show convergence in Fig. 8, with TJ=5.0x 10-2 and 20,000 jobs

per iteration.

Case 6: A,: EXP(l.0), A2: UN[3.5,4.5], A 3: UN[7.5,8.5], A4 : EXP(3.0)

S: EXP(1.0), S2: EXP(4.0), S3: EXP(6.0), S4: EXP(8.6)-

C1, C2, C3, C4: CO(2.0)

Our purpose here is to demonstrate the adaptive properties of this algorithm in a general system

with different arrival processes and inhomogeneous processors (node 4 is 8 times faster than node

1).

In Fig. 9 we show the behavior of the algorithm when node 1 experiences a degradation of a

factor of 20 (i.e. the mean service time becomes 20.0 after the 2 0 th iteration). As expected, the

fraction of jobs lost immediately increases (from about 0.33 to about 0.78). The load sharing is

then gradually adjusted to a new optimal allocation with a loss fraction of about 0.70. Finally, the

initial service rate of nodel is restored, and load sharing gradually returns to an allocation yielding

a loss fraction of about 0.33.

In the remaining cases examined, we have considered a seven-node system. As shown in

Figures 10-11, the basic properties of the algorithm are unaffected by an increase in the size of the

system. The main effect is in the selection of appropriate step size and observation periods, which

become more constrained. In Fig. 10, note that the algorithm tends to become unstable even if

1i=5.0xl0 -2, a value which was sufficiently small in the four-node model.
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3.3. Extensions to Dynamic Load Sharing.

For the static distributed load sharing algorithm considered above, it is clear that the choice of step

size and observation period length parameters is critical in guaranteeing fast and reasonably smooth

convergence. There are several simple enhancements one can immediately notice, which remain to

be done. Specifically, there is no reason that these two parameters should remain fixed throughout

the algorithm execution; it is reasonable to start out with large step size and short observation

periods, which can provide fast initial improvement. Subsequently, these parameters can be

adjusted to avoid instability and to gradually approach optimal performance.

Another issue that remains to be addressed is that of the effect of communication delays in

transferring jobs through a network. When such delays are not negligible, we can no longer

replace the individual marginal losses aL.pxij by the single derivative iLji)Pj, where Pj is the total

flow into node j. In other words, rather than a single class of jobs, node j must now distinguish

between N classes (depending on the source of the job), or at least two classes: local and remote.

The next interesting task is that of extending load sharing to include instantaneous state

information, such as the job backlog (queue length) xi at node i. One can then investigate

threshold-based load sharing schemes, which operate as follows:

* whenever a job is submitted to node i, check the queue length xi and compare it to some

specified threshold Ti (to be determined).

* if xi < Ti, then keep the job at node i.

" if xi 2t Ti, then send the job to some other node, using routing variables Oij, jei.

Thus, the problem here involves both adjusting the thresholds and the routing variables. Note that

Ti is integer-valued, hence standard gradient estimation techniques (including PA) are not

applicable. It is often the case that such systems are characterized by discrete (integer-valued)

parameters. Part of our work has therefore focused on investigating how to obtain sensitivity

estimates in this case. This work is outlined in section 3.4, and described in more detail in [8] (also

Appendix B).
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3.4. Sensitivity Analysis for Distributed Processing Systems with Discrete
Parameters.

The problem we have addressed is the following. Suppose a system is characterized by several

discrete parameters (such as the thresholds defined above). Selecting the optimal values of these

parameters can drastically affect the performance of the system. Furthermore, these parameters can

be used to automatically adjust the system to changing operating conditions (e.g. processor

failures, sudden traffic increases). However, to be able to make such adjustment requires

knowledge of the performance sensitivity with respect to the parameters. This information is

generally very hard to obtain, since the functional relationship between performance measures and

parameters is not available.

The main idea we have investigated is that of modeling systems of interest through augmented

Markov or semi-Markov chain models. We have developed a general framework for obtaining the

types of sensitivities mentioned above, and have verified its validity for some simple cases (see

Appendix B). This approach is still based on direct observation of a system in operation, and

requires little overhead. It remains to use this approach in order to implement a dynamic load-

sharing scheme as described in the previous section.

Another area where this approach appears to be promising is that of scheduling different types

of jobs at a processor. This is a complex problem of significant practical interest, since it is often

the case that jobs are classified in terms of priority, real-time constraints, execution length, or other

characteristics. We present a brief overview of the problem in the next section..

3.4.1. Dynamic Processor Scheduling.

As shown in Fig. 12, the scheduling problem involves selecting the next job to be processed from

a collection of K queues, each representing a different class. In the simple case where the process

rate of class k is A.k, and a measure of priority is represented by the waiting cost per unit time ck, it
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can be shown that the policy minimizing the mean job delay is a simple static one: always process a

job from the class with the highest (lgkck) value [9]. If, however, real-time constraints are present,

queue capacities are limited, or other complications are introduced, a dynamic scheduling policy is

expected to provide better performance. For some simple cases, we have early results showing that

threshold based policies are in fact optimal.

PROCESSOR

k=1 SN 1

k=K'

Figure 12: The Processor Scheduling Problem

The policy we have fomulated to be analyzed using the augmented chain approach described in

Appendix B is the following. Suppose job classes have been prioritized so that the highest priority

jobs are in queue 1, and so on. Our objective here may be to minimize a combination of average

delays and loss fractions for jobs with deadlines. Then, for the case where K=2, consider:

" if N1 > T1 , process class I

• if N1 < T1, then: if N2 > T2 , serve class 2, otherwise serve class 1.

In this scheme, the processor only serves class 2 jobs if queue 1 is sufficiently low and queue 2

sufficiently high. As in other threshold-based policies, the question is that of determining the

optimal values of T1 , T2. This problem remains to be solved, and comparisons with other

scheduling policies remain to be made.

4. DESIGN A.ND ANALYSIS OF PARALLEL PROCESSING SYSTEMS.

In this section we report on two problems related to parallel processing systems that we studied.
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In the first problem we studied the behavior of two different scheduling policies on a

multiprogrammed multiprocessor that executes parallel programs. In the second problem, we

developed mathematical models for a class of parallel systems that can be modeled as acyclicfork-.

join queueing networks. We report on each of these in the remainder of this section.

4.1. Multiprocessor scheduling

We studied the performance of a first come first serve (FCFS) and processor sharing (PS) policies

for scheduling parallel programs on a multiprogrammed multiprocessor. Specifically, we

developed analytic models that predict the behavior of PS when used to schedule fork/join jobs

onto a multiprocessor and compared its performance to FCFS. Here a fork/join job consists of a

number of tasks that can be executed independently of each other. The job is not considered to be

complete until the last task completes. The fork/join job is the simplest nontrivial example of a

parallel job.

We developed an analytic model that provides tight bounds on the expected response time of a

fork/join job under the assumptions that jobs arrive to the multiprocessor according to a Poisson

process and that task service times are independent and identically distributed exponential random

variables. Details of the analysis can be found in [101 (also Appendix C). We study two PS

disciplines, one called task scheduling processor sharing, the other job scheduling processor

sharing. The first policy schedules tasks independently of each other, thus allowing parallel

execution, whereas the second policy schedules entire jobs to individual processors. The second

policy does not allow parallel execution of a job. We find that task scheduling does not always

outperforn job scheduling. Specifically, job scheduling always performs better when the

processor utilizations are high. This is because at high utilizations there is little advantage to parallel

execution of a single job. On the other hand, task scheduling gives preference to jobs with many

tasks over jobs with few tasks unlike job scheduling which gives equal preference to all jobs.

Consequently, small jobs complete more quickly at high utilizations under job scheduling.
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We also compare processor sharing with FCFS. We find that FCFS outperforms processor

sharing for a large class of workloads. We also compare the performance of processor sharing and

FCFS for systems with two classes of jobs. We find that the system performs poorly when the

processors are partitioned between the classes as compared to a system that shares the processors

amongst all jobs.

There remain many unanswered questions. These include: What are the effects of priorities on

the behavior of different classes of jobs? What are the effects of real time constraints? How should

job and task scheduling be integrated together to achieve the best features of each policy?

4.2. Models of Parallel Systems.

We studied a class of acyclicfork-join queueing networks (AFJQN's) that arise in the performance

analysis of parallel processing applications. We obtained the maximum throughputs and developed

upper and lower bounds on the response times of jobs that execute in these systems. We describe

what an AFJQN is and the results of our analysis in the remainder of this section.

AFJQN's arise naturally in parallel processing applications. Many parallel programs are

decomposed into tasks, each of which can execute on a separate processor. The division of the

parallel program into tasks can be described by a directed graph where the nodes of the graph

correspond to tasks and directed edges represent the precedence relations between tasks. In many

cases the underlying graph is acyclic and the program is implemented with the use of fork and join

constructs. Briefly, a fork exists at each point in a parallel program that one or more tasks can be

initialized simultaneously (1). A join occurs whenever a task is allowed to begin execution

following the completion of one or more tasks. Forks and joins are reflected in the underlying

computation graph in the following manner. A task that has one or more outgoing edges

corresponds to a fork. A task with one or more incoming edges corresponds to a join. These are

(1) Strictly speaking a fork implies that (two or more) tasks are started. However, our definition simplifies the

notation required for the analysis
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exemplified in the parbegin and parend constructs available in parallel programming languages

such as Concurrent Pascal [11], Concurrent Sequential Processes (CSP) [12], and Ada [13].

(a)

(b)

(a) A program (b) The associated
Fork join

Queueincq network

Figure 13: (a) A parallel program. (b) Associated AFJQN.
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Consider a multiple processor where each task of a specific program is mapped onto a separate

processor. The execution of a single program request can be described as follows: (i) Upon

completion of a marked task, tokens associated with the program are routed to each processor

handling the tasks that follow the marked task in the underlying computation graph; (ii) Once a

processor has received tokens from all tasks that precede a marked task in the computation graph,

this processor is allowed to execute it. Let this multiprocessor be required to service a stream of

requests corresponding to different instances of that program and assume each processor executes

its tasks in the same order that program requests arriveto the system. We have described, in brief,

an AFJQN. Figure 13a illustrates a hypothetical parallel program using forks and joins, and Fig.

13b illustrates the corresponding fork-join queueing network.

This class of queueing networks has not, in general, been solved. In our work, we have

obtained expressions for the maximum throughput in job requests per unit time that can be

processed for an arbitrary computation graph where the number of processors is at least as large as

the number of tasks and for very general assumptions on the job request process and service time

requirements of all of the tasks. In addition, we have obtained upper and lower bounds on the

expected program execution time through the use of stochastic ordering principles (see [ 14]). We

have shown, for example, that decreased (increased) variability in the time between job requests

results in a decrease (increase) in the job execution time. Consequently we can numerically obtain

bounds by assuming that the times between job arrivals are constant. In addition, we have shown

that if we assume that the times required to traverse each path between the source and the

destination in the AFJQN, then we obtain a pessimistic bound on the average response time by

taking the average of the (maximum) of the times over all paths between source and destination.

Details of the analysis can be found in [15] (also Appendix D).

A number of tasks remain to be done and a number of interesting questions remain to be

answered. For example, we have not developed a software system to actually calculate bounds on

the mean program execution time. In addition, there are numerous other parallel processing
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architectures to be considered such as one where tasks are not mapped to a processors but, rather,

a processor is allowed to execute any task that is ready for execution. The work reported above

does not address some of the issues raised in real-time systems. For example, what is the

probability that a job will miss a deadline?

5. CONCLUSIONS.

We have addressed both system-level and node-level issues in distributed systems. At the system

level, we have considered load sharing for jobs with real-time constraints, and determined that

simple policies can provide performance very near the ideal optimum. We have also derived and

tested load sharing algorithms which can be implemented under general conditions, requiring no

specific modeling assumptions or knowledge of system parameters. At the node level, we have

formulated a task scheduling problem, and have investigated some parallelism issues for the case

of multiprocessor nodes. We have determined that the advantages of parallelism are dependent on

several factors, and that a simple FCFS approach is occasionally preferable.

In the development of adaptive load sharing algorithms, we have limited ourselves to the static

case. We have, however, obtained in the course of our work a general framework for on-line

marginal loss estimation to be used for extensions to the dynamic case. This is the subject of future

work. Furthermore, an issue to be addressed is that of the interaction between the system level and

node control in the presence of real-time constraints. The task scheduling problem itself also

remains to be addressed in detail; our results to-date have generated a suitable framework for

accomplishing this in the near future. Finally, our work on parallelism issues has given rise to a

number of problems, such as the effect of priorities, and the question of effectively combining job

and task scheduling to achieve the best features of each.
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Abstract

In soft real-time distributed computer systems, a job submitted at a node in the network

must complete or begin execution within a specified time constraint, otherwise it is considered
lost. When a single node occasionally experiences an overload of jobs, it may still be possible

to execute some of the otherwise lost jobs by invoking a load sharing algorithm to distribute the

local overload to other system nodes. We examine several relatively simple approaches to load

sharing and show that these" simple real-time load sharing algorithms may often perform as well

as their more complex counterparts. Approximate analytic performance models are developed and
validated through simulation. The performance results suggest that, over a relatively wide range of

system parameters, the performance of these simple approaches are substantially better than the

case of no load sharing and often close to that of a theoretically optimum algorithm.
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1 Introduction

A primary motivating factor behind the development of distributed computer systems has been the

need to efficiently utilize the resources available within the distributed environment. In this paper,

we consider the case of sharing the computational resources of the system nodes. This can be done

by transferring jobs which are submitted to heavily loaded nodes to more lightly loaded nodes. This

process of sharing the workload over the entire system is generally known as load balancing or load

Sharing (LS). Although a cost (e.g., a time delay) is typically incurred by transferring a job from one

node to another, the performance of a distributed computer system can generally be improved by an

effective load sharing policy 1201.

In this paper, we study soft real-time systems. Real time tasks can essentially be classified into

two: (1) tasks which must begin execution within a specified amount of time after their initial arrival

to the system and (2) tasks which must complete execution within a fixed amount of time after their

initial arrival to the system. The first set of jobs are characterized by a bounded queueing time

whereas the second is characterized by a bounded waiting time. For both types of jobs, those failing to

meet their deadline are considered lost. One important purpose of load sharing in a real-time system

then is to minimize thai percentage of job# lost. Examples of systems exhibiting such soft real-time

behaviour include applications in distributed systems for industrial process control 1231, autonomous

manufacturing [31, and air traffic control [91. In these applications, results of a computation are typically

needed in order to perform some control function at a given point in time. Failure of a job to meet

its deadline may then requirie the initiation of a recovery procedure, which can be very costly from a

performance standpoint [9].

It has been previously noted that for non-real-time systems, relatively simple decentralized policies

may often provide effective load sharing in a distributed system 1211 [71. These works, in particular the

analytic work in (71, motivate our present work which establishes complementary results for the case

of real-time systems, systems having performance requirements and evaluation metrics which differ

significantly from those of non-real-time systems. We stress that, as in 171, our goal here is not to

propose any specific real-time load sharing algorithm nor to necessarily develop performance models

for predicting the absolute performance of specific LS approaches, but rather to address the more

fundamental question of the level of complexity required to implement effective load sharing, in this

case in a distributed real-time environment.

In this paper, we adopt an analytic approach towards evaluating various approaches towards real-

time load sharing. In section 2, we review previous work in the area of real-time load sharing and

then, in section 3, describe the distributed system model used in this paper. Our analysis for tasks

with bounded queueing time begins in section 4, and we adopt the general methodology (71 (also 1251)

of first developing a model for a single node in isolation and then combining these node-level models
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into a single system level-model. In section 4.1, we first develop a model of job loss from a generic

system node in isolation. Because we are interested in studying real-time performance, our model of a

node is necessarily different from that traditionally adopted in load balancing studies for non-real-time

systems. In particular, rather than adopting a Markov chain model based on the number of jobs queued

for execution at a node, we characterize a node's state by its amount of "unfinished work" and derive

a set of integro-differential equations governing the evolution of unfinished work at a node. We must

additionally carefully distinguish between locally-arriving jobs and transferred jobs, since the latter

arrive with tighter time constraints due to the transfer delay incurred.

In section 4.2, we then compose instances of this generic node model to create a system-level model

for the entire distributed system. Central to this composition is the assumption (first introduced in

171, and also used in f25J) of independence among the states of different nodes, an assumption we

later validate for our system under study through simulation. We then use this system-level model

to quantitatively study the real-time performance of two simple approaches towards real-time load

sharing. In both of the approaches studied, a job whose deadline can not be met locally may be

transferred to a remote node for possible execution. In the first approach, termed "quasi-dynamic load

sharing" (QDLS), a job which can not meet its deadline locally is sent to a probabilistically-chosen

remote node. This job will then be either successfully executed or lost at the remote node. We note

that the policy of probabilistically selecting a remote node for execution has been extensively studied

for the non-real-time case [15,19,21,24,71; the policy of transferring jobs when real-time constraint can

not be met locally, however, has not been examined in any previous studies. The second approach

studied is the probing approath examined in 171 for the case of non-real-time systems. In this approach,

a node may probe some limited number of other system nodes and then transfer a job if one of these

nodes can execute the job within its deadline. If none of the probed nodes can do so, the job is then

lost. Finally, we compare the QDLS and probing policies to the bounding cases of no load sharing and

the theoretically optimum LS algorithm. A similar study is performed for jobs with bounded waiting

time in section 5. However we shall restrict ourselves only to the simple probing policy as the model

becomes sufficiently comlpex.

We will see that for a relatively wide range of system parameters, the simple approaches studied

perform significantly better than the case of no load sharing and often perform remarkably close to

that of the theoretically optimum algorithm. Our conclusion thus complements previously-established

results for LS in non-real-time systems 171: very simple approaches, which use only a minimal amount

of state information and have an extremely simple decision-making process (and hence are simple to

implement) are often sufficient to provide effective load sharing in a distributed real-time computer

system.
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2 Previous Work on Real-Time Load Sharing

We can classify previous efforts in the area of load sharing in real-time systems into two classes:

those that adopt the multiprocessor model and those that adopt the distributed system model. In the

multiprocessor model, jobs arrive at an omniscient centralized controller which matches (schedules)

the jobs to the processors. Typically, the set of jobs arrival times, timing constraints and execution

times are known a priori to the centralized scheduler. In the distributed system model (adopted in

this paper), jobs may arrive to any node in the system and a node has no a priori information about

future arrival times of jobs nor about the state of the other nodes in the network.

The work of Muntz and Coffman [181 and Leinbaugh 1121 adopts the multiprocessor model. These

efforts are directed towards determining a minimum system configuration which can support the spec-

ified job load for a given process to processor scheduling policy. Real time multiprocessor scheduling

has also been examined in [171, in which a graph model is used to represent timing constraints among a

set of periodic tasks. In (21, an approximate algorithm is presented for optimally scheduling n periodic

tasks on m processors. The real time scheduling problem for multiprocessors was also considered in

[16], although the performance metrics adopted in [161 (essentially, an equal average load at each node)

are perhaps more applicable in a non-real-time environment.

There have been relatively few previous efforts adopting the distributed system model of real time

load sharing, and it is clear that work in this area has just recently begun. For example, the explicit

purpose of 1131 is the study 9f real time scheduling in a uniprocessor environment as a precursor to

examining similar issues in a distributed environment. In [261 1221, a specific load sharing scheme for

real time systems is proposed and its performance examined through simulation. The load sharing

policy introduced in 1261 1221 is based on the use of focused addressing and bidding and is meant for

distributed systems in which real time periodic jobs are given preference over other real time jobs.

In this approach, a node which can not guarantee the execution of a job within the specified time

constraint permits other nodes to bid for the execution of the job and at the same time may transfer

the job to that node (or set of nodes) which are estimated to be most likely to be able to successfully

execute the job. Although this sophisticated algorithm was shown to perform quite well, it is closely

tied to the notion of periodic tasks. Also, the authors do not consider the performance of the bidding

scheme relative to all but the simplest of other possible approaches. In this paper we demonstrate that.

in fact, simple approaches may perform as well as the more sophisticated approaches over a wide range

of system parameters.

3 The Model of the Distributed System
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Figure 1: Model of a distributed system

Our model of the distributed system is shown in figure I The sytem consists of N nodes which

are interconnected through a communications network; the network is assumed to be logically fully

connected in that every node can communicate with every other node. A stream of jobs is submitted

locally, to node i. Unless stated otherwise, we will assume that the nodes are heterogeneous in the

sense that each node may have a different arrival rate of externally submitted jobs, but homogeneous

in the sense that a job submitted at any node in the network can be processed at any other node in

the network; this latter assumption can be easily relaxed.

We are interested in studying LS policies in a soft real time system, in which a job is lost if it can not

complete or begin exeeution, (as the case may be) within a given time constraint. If the deadline cannot

be met locally, a LS algorithm may be invoked to transfer the job to another node which can possibly

meet the jobs demands. We will assume that a job cannot be transferred more than once in order
to avoid the problem of "trashing" and assume that a constant delay, d, (representing communication

and transfer processing delays) is required to transfer a job from one node to another. Thus, if a job
first arrives at node i with an initial time constraint of KI and is transferred to another node j for

processing, its new time constraint at node j, which we will denote K2, will be'equal to K I - d.

4 LS for Real Time Tasks with Bounded Queueing Time

As mentioned earlier, real time task with bounded waiting time tasks are time contrained such that

a job must begin execution within KI time units of its initial arrival. For the above mentioned jobs we

will examine two simple approaches:
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" quasi-dynamic load sharing (QDLS) [15,19,21,24,71.

" probing [7].

which have been previously studied for non-real-time systems and compare their real-time performance

with that of the bounding cases of no load sharing and the theoretically optimum real-time LS algo-

rithm.

As discussed in [71, an LS approach can be characterized by its transfer policy, and its location

policy. The transfer policy determines when a job should be transferred for remote execution. The

location policy, determines where (i.e., at which remote node) a transferred job will be executed.

Both approaches examined have the same simple transfer policy:

e Transfer policy (QDLS and probing): A job is transferred from node / to a remote node if

and only if the unfinished workload of the jobs currently at node i exceeds the time constraint

for the job. A job will thus either queue for service at the node at which it initially arrives (in

which case it will be guaranteed execution) or will be transferred to some remote node. We note

that the transfer policy decision is made dynamically, based on the current state of the node.

We are not aware of any previous analytic studies which have considered this transfer policy in

a real-time environment.

The location policies of QDLS and probing are:

* Location policy (QDLS): If ajob is to be transferred, a remote "target" node (to which the job

is sent) is chosen probabilitically and independent of the current state of the remote nodes. Note

that QDLS requires no non-local, dynamic state information. Although this location policy has

been extensively studied for the non-real-time case [15,19,21,24,7], we are not aware of previous

analytic work addressing this problem in a real-time environment.

o Location policy (probing): When a job is to be transferred a node probes some specified

number of other system nodes (chosen at random) to determine if one of them can currently

guarantee execution of this job, i.e., has an amount of unfinished work less than the time constraint

of the job minus the transfer delay. A node may probe up to some maximum number, Lp, (the

probe limit) of other nodes. If none of the probed nodes can execute the job, the job is lost

We note that probing may be considered a simplified form of bidding 1221. The probing policy

studied here was first analytically examined in 171 (for non-real-time systems) and we follow their

methodology when studying the system-level model (but not the node-level model) of probing

In the analytic performance models developed in the following sections, we will ignore several aspects

of LS approaches which, in practice, may influence their performance. Specifically, we will ignore the
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processor overhead requirec ,i transfer jobs as well as the overhead and time delays required to probe

a set of nodes. We will also assume in our analytic model of probing (but not in our simulation model

used for validation), that a remote node which responds positively Eo a probing message will always be

able to execute the transferred job, even though that node's workload may change between the time it
sends a positive response and the time a transferred job arrives. Our reason for ignoring these details

is that as in [7, rather than analyzing the absolute performance of a specific LS algorithm, we are
instead interested in analyzing the relative performance of a set of LS approaches as a function of their
complexity. In particular, we are interested in examining possible performance differences between
simple probing, a more sophisticated approach towards LS and a theoretically optimum LS algorithm.

Ignoring the overhead effects, a more complex approach can at best achieve a performance level falling
between probing and the theoretical optimum. If this gap is small (as we find is often the case), the

'erformance of probing and any more complicated approach are necessarily close. When overhead is
considered, the small performance difference between probing and a more complex approach, which

requires additional communication and computational overhead, can only become smaller. Thus, our
abstract models do provide the basis for a meaningful comparison of the relative performance of real
time load sharing strategies. We also note that when the effects of overhead that we have not modeled

are negligible (as our simulation results demonstrate can be the case), our analytic models also provide
a means for assessing the absolute real time performance of an LS approach as well.

4.1 Performance Models of the QDLS and Probing LS Algorithms

In this section we develop analytic models in order to quantitatively assess the real time performance
of the QDLS and probing LS policies. As a first step, in section 4.1 we develop a performance model
for predicting the steady state job loss from the "generic node' shown in figure 2, without reference to
any specific LS policy. This model is then used in section 4.2.1 to predict the real time performance of

a system in which no load sharing (NLS) occurs. Then, adopting the methodology introduced in (T,251
(with modifications to permit us to examine QDLS in a heterogeneous system), the generic model of

a node in isolation is then extended in sections 4.2.2 and 4.2.3 to provide a system-level model for

studying the performance of QDLS and probing.

4.: Job Loss from a Generic Node

Figure 2 shows our *generic" model of an individual system node. It consists of an upper queue

and a lower queue, connected to a single server, representing the computational resource at a node. A
job arriving to the lower queue with an execution time of x, must complete execution within K I + r
time units; a job entering the upper queue must complete within K2 + z. Equivalently, a job arriving
to the lower (upper) queue must begin service within an amount of time, KI (K2) after its arrival;
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Figure 2: A generic node In isolation

otherwise it will be lost.

The server has a mean service rate of it jobs/sec and the service policy is FCFS across all the jobs

belonging to both the queues; we note that in the case that the difference between K1 and K2 is

small, (as will often be the case when we use this model in a LS context), FCFS closely approximates a
Ushortest deadline first" scheduling policy. We assume that the arrival of jobs at the lower and upper

queues can be modeled by Poisson processes with mean rates Al and A2 , respectively.

The problem of queues with impatient customers has been well-studied in the field of operations

research. Gavish et al. 18), study an FCFS M/M/1 system where arriving customers are admitted only

if their waiting times plus service times do not exceed some fixed amount. Baccelli et al. [I], study

a single-server system in which a customer is lost when its waiting time exceeds a random threshold.

They derive equations for several configurations of arrival rates, service time distributions and patience

thresholds (time constraints). As we will be only interested in determining the probability of customer

loss, we may adopt a simpler approach than these efforts.

Thus, let F(w,t) denote the probability that at time t, the unfinished work in both queues is less

than or equal to t. Without loss of generality we also assume that KI > f2. If B(z) denotes the PDF

of the service time distribution, then following the approaches in 18) 1101, we can derive the following

time-evolution equations for F(w, t + At). We consider three different regions.

In the region 0 < t < K2 we have,

F(w,t+ At) = (1- A At)(1 - A2&t)F(w +At,t)

+ 1  A2a) j B(w - u)dflu,f)
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+ A,2 At(l - AiAt) fB(w -u)d.F(u, t)

The expression on the left hand side gives the probability that the unfinished work in the queue at

time t + At is less than w. This condition can be realized in several ways. First, no jobs may have

arrived in the interval it, t+At]. In this case, there must have been an amount of work less than w+ At

at time t. The second term on the right hand side of the above equation denotes the probability that

exactly one arrival (in time At) at the lower queue brings new unfinished work to the queue such that

the unfinished work at t+At is less than w. Similarly, the third term denotes the probability of exactly

one arrival at the upper queue such that the new unfinished work at t + At is less than w.

In the region K2 < w < KI we have:

F(w,t-4-At) = (I-A 1At)(I-A7At)F(w+ At,t)

+ AAt(I - A760) fo B(us - us)du F(ts, t)( F(K2,t) fo'B(w-u)" %-
+ '%2at(l - A lai) ,+', (,t

+ (I - F(K2, t)) d- (u ,)

The first two terms of the above equation are similar to those described above. The third term

is for the case of an arrival at the upper queue in the interval It, t + At]. With probability F(K2, t),

the job joins the queue. In this case, the new work brought in by the job plus the unfinished work at

time t must be less than w. Note that the probability of this latter event must be conditioned on the

event of the unfinished work at time t being less than K2. Similarly, with probability I - F(K2, t)

the arriving job finds an amount of work greater than K2, and hence does not join the queue. In this

case the unfinished work at time t must have been less than w + At. This probability must also be

conditioned, this time on the fact that an arriving job did not join the queue.

Rearranging the terms in the above two equations and taking limits as At - 0, we get:

a F(w, t) a BF(w, t) V ~ ''at aw , = - (X1 
+ X, )F(,t) + ( \ + \2) 1 (,, B(w - u)dF(,t) O< w< K2

-A2  F(K2,t) - 1 K B(w - u)duF(u,t) K2 < w < KI

and taking limits as t -. oo, we obtain the following steady state equations:
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dF(w) = (At + A2 )F(w) - (AI + A2 ) %f B(w - u)d F(u) 0 < w < K2 (1)

d-F(u) =A { F(w) - jB(w - u)duF(u) }+dw f

A2 F(K2) - j B(w - u)duF(u) } K2<w< K1 (2)

In order to provide a check of the above equations, we show in Appendix A that equation 2 can

be independently derived in a different manner using level crossing arguments [4). In the case that job

execution times are exponentially distributed with a mean of t, the solution to equation 1 is given by:

F(w) = - 0 < w < K2
(3)

F(w) = F(K 2) + + F(O+)e.%2K2{ (i - )K2 - e - ( -Jh 1)w} K 2 < w < K 1(

At this point, we could now proceed in a similar fashion to derive an expression for F(w) in the

region KI < w. However, if we are only interested in computing the fraction of jobs lost, we can derive

a simpler third equation by considering flow conservation across the boundaries shown in figure 2. The

total flow into the node consists of the sum of A, and A2, while the total flow out c 'he node consists

of a departure stream from the server and the two loss streams, one from each of the queues. Hence,

A, +A2 = {I- F(O+)}jA+ {1- F(K2)}A2+ {1- F(K)}A, (4)

We can now solve the set of simultaneous equations 3 through 4, to numerically obtain F(K 1), F(K2)

and F(O+).

4.3 Incorporating a Generic Node Model into a Distributed System Model

We now incorporate our model of a generic node in isolation into a system-level model in order to

study the performance of no load sharing, QDLS, and probing. In each of our models, each system
node will be represented by the generic node model of figure 2. The arrival rates to the lower and

upper queues at node i will be denoted A'1 and A2, respectively, and F,(w) will denote the PDF of the

unfinished work at node i; note that although F,(w) is a function of A', A2, K 1, and K2, we have not

indicated this functional dependence directly.

When incorporating our model of a generic node into a system-level model, we let the arrivals to

the lower queue at node i, A', represent the "external" arrivals of jobs to node i; these "external"
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arrivals, with an initial time constraint (until execution begins) of K1, represent jobs which are first

submitted to the system at node i and are inputs to our model, specifying the load on the distributed

system. With probability 1 - Fi(K1), an externally arriving job at node 1' will not be able to meet

its time constraint locally (i.e., at node 1). In this case, the job will either be lost or will be sent to

another node for possible execution, depending on the load sharing policy employed.

The arrivals to the upper queue at node s, A2, represent the arrival of "internally transmitted"

jobs to node i, i.e., the arrival of jobs which have been transferred to node ' from other nodes in the

system, and thus depend on the LS scheme used. The time constraint (until execution begins) for these

internally transmitted jobs is K2. Recall that d is the fixed delay associated with a job transfer and

thus K2 = KI - d. Since a job can be transferred at most once, a job which arrives to the upper queue

and cannot meet its deadline is unconditionally lost.

4.3.1 Job Loss with No Load Sharing (NLS)

With no load sharing, no jobs are transferred between nodes and hence A2 = 0 for all nodes i. In

this case, we can solve equations 3 and 4 for F1 (O+), F,(KI) and Fi(K2) for a given A1 and compute

the system-wide loss by:
N

loss rate NLS = ZA'(1 - F,(K1)) (5)

4.3.2 Job Loss with Quasldynamic Load Sharing (QDLS)

Recall that in our QDLS approach, when an externally arriving job arrives at a node and can not

finish execution within the time constraint, K I + z, it is transferred to a probabilistically-chosen remote

node for possible execution. In our system-level model of QDLS then, all jobs exiting before joining the

lower queue in figure 2 are transferred to another node for possible remote execution. Let A denote

the job transfer rate from node i to node j and let A" represent the externally arriving jobs that are

executed locally. Given the QDLS scheme and given that an externally arriving job is transferred if

and only if it can not be executed locally, we have the following flow constraints:

" A'(i - F,(K1)) = All.

" A'1F,(K1) =A"

" A2 , A)', for all nodes j.
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Given a set of flows satisfying the above constraints, the system-wide job loss under QDLS can be

easily computed. Since all job loss at node 9 can only occur in the upper queue, we can first solve

equations 3 and 4 for F,(0+), Fi(K1) and Fi(K2) and then compute the system-wide loss under QDL.S

by:

loss rate QDLS = A, '(.0 - F,(K.2))
(6)IV=k" 1 0-  F,(K 2))

Clearly then, the system-wide rate at which jobs are lost depends on the values of (A'} (both directly

as shown above in equation 6 and indirectly through the dependence of F,(K2) at node 1 on (A'"') and

{A '}.) Thus, we are interested in determining the values of (A"'} which minimize equation 6 subject to

the flow constraints; this can be accomplished using any constrained optimization procedure, including

the procedure described in [111.

Finally, we note that unlike 171, we have not assumed a system of homogeneous nodes; this neces-

sitated the use of an optimization procedure. We have, however, adopted two assumptions introduced

in 17) in deriving equation 6. First, we have assumed that the individual Fi()'s are independent; that

is, a job's probability of being executed within its deadline at one node is independent of the state of

the other system nodes. A second assumption is that the arrival process at each of the upper queues,

which is formed by the superposition of the overflow processes of the other system nodes, is Poisson.

We note that these assumptions become asymptotically correct as the number of system nodes gets

very large [7,251 or as the ratio, A'/A' becomes very small. We also note that as shown in section 5,

for N equal to 20 nodes, our simulation studies yield performance results which are extremely close to

thore predicted by the analysis, thus corroborating the appropriateness of our analytic approximations.

4.3.3 Job Loss with Probing

For the case of probing, we follow [71 directly and obtain analytic results for the homogeneous case

in which A', is identical for all nodes, i. As a consequence the steady state probabilities F,(K2), F,(K1)

etc. will also be identical for all nodes. Since a job is lost only if it can not be executed locally within

KI time units and some Lp (the probe limit) other nodes are probed at random, each of which is then

found to have a current load of unfinished work greater than K2, we have:

loss ratepro'"" = A',(I - F(KI))(I - F(K2))L; (7)

Note that we cannot yet solve equations 3 and 4 for F(K2), and thereby compute the loss using 7, for

the A2 which result from the probing policy are still unknow. Again considering the homogeniety of the

system, we note that the steady state transfer rates out of all nodes must be identical; similarly, the
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rate at which jobs are transferred into the nodes muyst also be equal. This then implies that the steady

state flow of jobs out of any given node must equal the stead state flow of internally transmitted jobs

that are accepted and successfully executed at this node. We thus have the following flow constraint

for all nodes:

At(l - F(KI)) - A1(I - F(Kl))(I - F(K2))L, = A2F(K2) (8)

where we have dropped the i superscripts and subscripts since the system is homogeneous. Edations

3, 4, and 8 provide four equations in four unknowns (F(KI), F(K2), F(0 +) and A2 ). We can now solve

this set of simultaneous equations for F(KI) and F(K2) and directly compute the loss using equation

7.

4.4 Numerical Results

I, this section we present representative performance results for the QDLS and probing real time

load sharing schemes and compare their performance with that of the ideal case of perfect-information

load sharing and the case of no load sharing (NLS). We consider a 20 node system (the same size

considered in (7J), in which IA = I job second and a delay of d = 0.2, i.e., the transfer delay is 20% of

the job execution time.

We model the "ideal" case as an M/M/20 queueing system with a time constraint of KI and have

obtained the M/M/20 performance results through simulation. We note that in the M/M/20 system,

jobs are scheduled to available processors using complete information about the system state and incur

no transfer delay. Thus, the "ideal" performance bounds shown in the subsequent results are, in reality,
unattainable. This will be evident in our performance results, where for large values of KI and he&,y

external arrival rates, the QDLS and the probing curves approach limiting values which are slightly
above and to the left (i.e., poorer performance) than the upper bound predicted by our "ideal" case of

the Mi/M120 queue.

Figure 3 shows the fractions of jobs lost as a function of the average saytem arrival rate, -,.I A'I/N

under the QDLS policy. Performance results are presented for different values of the initial time

constraint, KI (0.5 sec. and 5.0 se.) and transfer delays of 0.1 and 0.2 time units (10% and 20%

opf the average job execution time). The system load was asymmetric, with half the nodes having an

average arrival rate of while the remaining half had an average arrival rate of " \ZN

should also note that in order to test our numerical, optimization, and simulation procedures, we first

studied QDLS in a completely symmetric system (not shown). As expected, the optimum (A.'/ti 1

were found to be equal, as were the optimum (AJ'}.

Several properties of the QDLS policy are evident from Figure 3. First, note that even for the most

stringent timing conditions (K = 0.5 and d = 0.2) QDLS performs significantly better than no load
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sharing. We additionally note that as the asymmetry in the arrival rates increases, QDLS performs

increasingly better than no load sharing. While these results might not seem surprising at first, we

note that QDLS is perhaps the simplest of all possible real time LS approaches and makes use of no

non-local dynamic state information. We also note that for a time constraint of 5.0 (i.e., where all jobs

must begin execution within 5 times their average execution time), the performance of this simplest of

all LS policies approaches that of the "ideal" case. Moreover, this performance difference is particularly

small in the system load regions of practical interest, in which the arrival rate of jobs to the system is

less than 70% of the physical capacity of the system. Figure 3 also indicates that the ideal curves show

a knee at an average load of 1.0; above this point the job arrival rate exceeds the system's capacity

and thus some jobs will necessarily be lost. We also note that lost jobs are not executed; if these jobs

were to be executed, higher losses would result since these lost jobs would place additional demands

on the service capacity of the nodes.

Finally, note that we have also plotted simulation results (point values shown as filled squares)

in Figure 3 for KI = 0.5. These simulation results were obtained without making the independence

assumptions and the Poisson approximation for A2, required by the analysis. In the simulation, the

optimized A'1 's from the analytic model were used to determine the probabilities with which a trans-

ferred job from node i was sent to some remote node, j. A transferred job arrived at its destination d

time units later with a new time constraint of (KI - d). Note that the close correspondence between

the simulation and analytic results corroborates our earlier belief that the approximations introduced

were indeed justifiable. In the case that d was chosen to be a smaller value (e.g., d = 0.1, not shown

here), the simulation and analytic results were found to match even more closely.

The real time performance of the probing approach is demonstrated in figure 4 for probe limits,

Lp = 1, 3, 5. As expected the performance of probing approaches the ideal limit as Lp increases.

Note, however, that a relatively small probing limit (.p = 5 when KI = 0.5 (an extremely tight

time constraint) and LP = 3 when KI = 5.0), results in a real time performance extremely close to

the unachievable upper bound. Also note that increasing the probing limit beyond a relatively small

number can result at best in only a marginal performance improvement; this results from the fact

that the probability that a job (which is to be transferred out) is accepted by the mtA probed node,

is given by F(K2)[1 - F(K2)Jm-l, and this probability decreases rapidly with increasing m. We may

conclude then that since additional probing beyond some small probe limit incurs additional overhead,

a relatively small probe limit would be sufficient in practice to implement effective real time load

sharing.

Once again, simulations were performed to validate our analysis. The results (plotted as filled

squares) in Figure 4 are shown for K I = 0.5 and Lp = 3. As with the QDLS simulations, the simulations

were performed without assuming independence among the states of the system nodes or a Poisson
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arrival rate at the upper queue. We also note that in our simulations, if a node responded positively

to a probe and its workload had increased beyond K2 within the d time units required to transfer a

job, the transferred job was simply lost, as would be the case in a real system. Again, we note that the

close correspondence between our simulation and analytic results indicate that reasonable modeling

assumptions and approximations were made in the development of our analytic model of probing.

Figure 5 indicates the dependence of the fraction of jobs lost on the time constraint, K1. Perfor-

mance results are shown for two different values of a symmetric load (an average of 0.4 and 1.2 external

arrivals/time unit per station), and a fixed transfer delay of 0.1. For A = 0.4 the curve for the Ideal

case lies along the x- axis. As expected, as KI increases, the performance of QDLS and probing with

Lp = 3 approach the upper performance bound. More importantly, note that the performance with

Lp = 3 is close to the ideal limiting performance values for even very stringent time constraints.

In summary, Figures 3 through 5 provide a quantitative basis for addressing the question of deter-

mining the appropriate level of complexity for LS algorithms. We note that a more complex approach

can at beat achieve a performance level falling in the gap between our probing results and the the-

oretical optimum. For system parameters of practical interest (i.e., a system loading less than the

physical capacity of the system and time constraints on the order of the service time of a job), this

gap has been shown to be quite small. If the overhead we have not modeled is to be considered, the

small performance difference between probing and a more complex approach, which requires additional

communication and computational overhead, can only become smaller.

5 Real-Time Tasks With Bounded Waiting Time

In this section we focus on a second model for real-time jobs, one in which a job must complete

execution within a fixed time after it initial arrival into the system. A job arriving at a node can only

be serviced locally if the time it could spend in the queue plus its service requirement is less than

the deadline, otherwise it is considered lost. As stated earlier, we assume that a job initially arrives

at a node with a fixed time constraint Ki, a FCFS scheduling policy at each node and a constant

network delay d associated with the job transferring procedure . Hence transferred jobs must complete

execution at the destination node in K! - d = K2 time units.

For this system, the transfer and location policies are modified to:

o Transfer Policy : A job is to be transferred from a node i if and only if the unfinished work at

node i plus the service requirement of the job exceeds its time constraint K I and its service time

is less than K2.

o Location Policy : The location policy is the same as in the previous section. For QDLS, a node

probabilistically selects a "target node" and the job is transferred to this node. For probing,
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a node probes a fixed number of nodes in the system to determine whether any of them can

guarantee the execution of the job, i.e if the unfinished work at the destination node plus the

service requirement of the job is less than K2. The job is transferred to the first node which

responds positively.

Note that for this system, the basis on which a job is denied service depends not only on the current

state of the node but also on the service time requirements of the job. Clearly, tasks requiring a service

time greater than KI cannot be executed locally. Furthermore, of the tasks which cannot be processed

locally, those requiring a service time greater than K2 will not be accepted by any node. Therefore,

transferring these tasks is futile. This distinguishes the transfer policy used in this system from the

system we had considered in the previous section, in which an attempt was made to transfer each job,

which could not be executed locally, regardless of its service time. As we will see, this sufficiently

complicates the model so that obtaining a closed form expression for the unfinished work becomes a

difficult task.

In the model developed below, we again ignore the processor overhead required transfer the job and

the time delay involved in probing. Hence the actual performance realized would in fact be higher than

the computed values. The reason for this omission is that we are again interested only in the relative

performance of the system rather than its absolute performance. Also, the model does not account for

the fact that the state of the node, to which a job is transferred, may undergo a change during the

time required for the transfer. However, our simulations do account for any changes which may occur

in the system during the time d.

5.1 Performance Models for an Individual Node in Isolation

Figure 6 shows the model of an individual node in the system. Externally arriving jobs (with rate

Al) comprise the lower job arrival stream. Of these jobs, only those whose deadline can be met by the

node are allowed to join the lower queue (hence all jobs in the lower queue have a time constraint equal

to KI). The externally arriving jobs which are not accepeted into the lower queue are either lost or

transferred out to other nodes. In the QDLS scheme the upper job arrival stream (with arrival rate

A,) represents the transferred jobs, whereas in the Probing Policy the upper stream represents probe

arrivals. A probe which is accepted then, translates into an arrival to the upper quieue. Hence all jobs

in the upper queue have a time constraint of K2. We will assume that arrivals to the lower and upper

queue follow a Poisson distribution with rate At and A2 respectively.

The bounded waiting for jobs having a single fixed deadline has been extensively examined. For

G1/G/1 systems, Loris-Tegheim [141 obtained the generating functions of the Laplace-Steiltjes trans.

forms of the distribution of the waiting time, for cases where the random variables give rise to a rational

transform function. Cohen 151 (Model I) also used transform techniques to study the equivalent prob-
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lern for M/M/I and MID/I queueing systemr. Gavish et. al. [81 derived analytical expressions for

the virtual waiting time distribution and the lose incurred by the system, for an M/M/1 system with

an FCFS service discipline. Their method is simpler than the techniques used by Loris-Tegheim 1141

and Cohen [51. We thus choose to extend the results in [81 to incorporate the second time constraint

needed in our model.

As in the previous section, following the approach of [8) [101, we can derive the time evolution

expression for the distribution of the unfinished work, F(w, t + At) in two different regions. Let B(z)

denote the PDF of the service time distribution of the externally arriving jobs. Note that the decision

of whether or not a job can be locally proccesed depends not only the current unfinished work at the

node but also on its service time requirements. Furthermore, of the jobs which cannot receive service

locally, only those with service time less than K2 may possibly be successfully executed as a result of

the LS policies. Thus the service time distribution of transferred job. will no longer be B(z). Let G(x)

denote the PDF of the service time distribution of these transferred jobs.

In the region 0 < w < K2 we have,

F(w, t + At) = (1 - A1At)(l - A2 At) F(W + At, t)

+ AtAt(i- A2At) fWA ' (l - B(KI - u))dJF(ut) F(w+ Att)o(u

+A1A(I A2 t - fo'w B (W - u) du F(u, t)J

+A 2At(I - A1At) + (I G(w - u)dF(u,t) } (9)
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The probability that the unfinished work in the queue at time t + At is less than w can evolve from
the state of the queue at time t in the following ways. The first term an the right hand denotes the
probability of the event that no jobs arrive in the interval it,t + AtI, in which case, there must have

been an amount of work lees than w + At at time t. The second term is a composite of two terms and

arises in the event that that exactly one arrival (in time At) occurs at the lower queue. In this case:

(a) if the unfinished work at time t plus the work brought in exceed KI, the job is rejected and no

addtional work is added t,, the queue; (b) if the unfinished work at time t plus the work brought in is

less than K1, the job joinn the queue and brings additional unfinished work to the queue such that the
unfinished work at t + Ai is less than w. The third term is similar to the second one, except that it
holds in the event that an arrival occurs at the upper queue and no arrival occurs at the lower queue

in the interval t + At.

In the region K2 < w - K1 we have,

F(w, t + At) = ( - AiAt)(1 - A2 At)F(w + At, t)

4 AAt(I - AAt){ fo"I'(I - B(K1 - u))d.F(u, t) F(w + At, t)

I+ fo' B(w - u)d.F(u, t)f

4 AlAt(1 - AAt)F(w + At, t) (10)

Equation 10 is similar to kSquation 9. Note that since the unfinished work is w > K2 at time t + At, a

probe/job arriving at the node in the interval At, will be declined. Hence, an arrival at upper queue

adds no work to the node

Expanding F(w + At, 1) with respect to the first variable and taking the limits as At - 0 we get

aF(w, t) F(w,) = A {B(K-u)-B(w - u)} dF(u,t)
at aOw fo

-,2f (G(K2-u)-G(t-u))dF(u,t) 0< w < K2

OF(o, t) aF(wt ) 'Bo_
a t a , = -At {B(KI - u) - B(w- u)}duF(u,t) K2 < w < K1

and taking limits as t - oo, we obtain the following steady state equations:

dF(to)
dAlf {B(Kl-u)- B(w-u)}duF(u)dw-

+A2 f(C(K2 - u) - C( - u)) d.F(u) 0 < w < K2 (II)

dF(w A L(B(KI-u)- B( -u)}du F(u) K2 < w<K (1
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Equations 11 and 12 can also be directly obtained using level crossing arguments 141 (see Appendix A).

By definition the maximum unfinished work at a node must be less than K 1. Thus the normalization

condition becomes,

foKi (u)du = 1 (13)

So far we have not obtained an explicit expression for the PDF, C(z). In order to do so, we consider

the various job streams shown in Figure 6. A job is denied service locally if the unfinished work in

the queue plus the service time of the job exceeds Ki. Hence the probability that a job cannot be

processed locally is given by,

!K,
prei = K[1 - B(K1 - u)]du(F(u),

an the rate at which jobs are rejected from the lower stream of jobs is thus,

Let J(z) be the service time distribution of the jobs in the AV" stream. Then,

1 rK1
J(w) - b(u) dF(,) du

f / b(u)[ - F(KI - u)1du(F(u)

Of these jobs, only those with service time less than K2 may be transferred out (represented by the

stream A< s2) in Figure 6) . Thus,

G(w) f0" b(u)[1 - F(KI - u)ldu

fo' b(u)[1 - F(KI - u)ldu

J _____ (14)
J(K2)

Using the expression for G(w) given in 14, in Equations 11 and 12, we observe that the pdf, f(w)

is a function of an integral containing F(r) itself. This adds sufficient complexity to the equIations 1I

and 12 that we resort to numerical techniques to solve for F(w).

Before proceeding to compute the losses incurred in the system, we note that since we are considering

a homogenous system (in which each node experiences identical external job arrival rates), the long

term time averages of the unfinished work at each node will be the same. We therefore do not attach

a superscript i with the variables which denote the node. As in section 4, in the homogenous case the

system wide losses can again be easily computed by simply observing a single node in isolation.
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5.2 Job Loss with no Load Sharing

With no load sharing, A2 = 0, and the problem reduces to a hounded waiting time problem for an

M/M/I queue. Equations 11 and 12 become identical to those derived in (81. Analytical expressions

for f (w) have been obtained in (81. The loss rate experienced by a single node can be easily computed

from,

Lose rateNLS = AP" (15)

5.3 Job Loss with QDLS

For a homogenous system the QDLS policy reduces to the Probing Policy with Lp = 1. Therefore,

we discuss the losses incurred by a single node in the following section. We note that for a heterogenous

system, extensivenumerical computations are required to solve both, equations 11 and 12 as well as
to optimize the losses. We have thus chosen to study the simpler homogenous system.

5.4 Job Loss with Probing

When Probing Policy is used, locally rejected jobs with service time greater than K2 are simply

lost. The loss rate at any node due to the large service times (the stream A>*, in Figure 6) is given by,

,\>k2, -- \rej f duJ(U)
loss' K2 (~

JK2I

X A1(1 - B(Kl) + 1 K2 b(u)(1 - F(KI - u)Idu

For the remaining jobs in the stream Ar ti (with service time less than K2 and denoted by the stream
A<" in Figure 6), probes are sent to L, other nodes. A job is lost only if all nodes which are probed

cannot meet the deadline of the job. Thus the loss rate at a node due to congestion at other nodes is,

los= (A ' ( 1 - G(K2 - z)]d,,F(4))

The loss rate at a single node can be determined from,

Loss rate "° k - " + loss (16)

Equations II and 12 can be numerically solved for a given set of parameters 1 1,A 2, K , K2 and F(0 + )

(the impulse function of the unfinished work at 0) (see Appendix B). However, F(O+ ) and A2 are still

unknown. We now exploit the homogeniety of the system (see 1TJ) to obtain the flow constraint at a
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single node. As described in section 4.3.2 at steady state, the flow rate at which jobs are internally

transferred out of a node must equal the flow rate at which probes are accepted. Thus,

K2 -(7

A2 G(K2 - z)dF(u) = A"r" - A>&2 - AC 17)

Equations 13 and 17 can now be solved to determine the unknowns F(O) and A7.

5.5 Numerical Results

In this secition we compare the losses of the probing policy for real-time tasks with bounded waiting

time with that of no LS and perfect LS for a system of 20 nodes. We assume that the service time

distribution of the jobs that arrive externally is exponentially distributed and that 1A = 1 jobs/second.

To solve for F(O+) and A2 in equations 13 and 17, standard IMSL packages were used. However,

to numerically perform the integration required in equations 13 and 17, the value of the function at

discrete points are required. These values were determined from the equations 11 and 12. Note that

the left hand side of these equations can be expressed as f(w) (the pdf of the unfinished work), which

transforms tne integro-differential equations to integral equations. The integral equations were solved

using the method of substitution and the integration was numerically performed using the trapezoidal

rule.

One technique to determine the value of the function f (w) at discrete points, for a given set of

F(0 + ) and A2 would be to explicitely substiute the expression of the PDF G(x) using equation 14 in

equation 11. Thus f1(w) becomes a function of the integral containing F(w). However, for incorrect

values of F(O+ ) and A2 , initially provided by IMSL, the solution of f1(w) (using the the method of

substitution to solve 11) fails to convergence.

A second approach (used here) would be to iteratively iteratively determine the value of G(x) and

use the given set of G(z) at each step, to solve the integral equation 11 (see Appendix B for details).

Partial success was obtained and convergence still posed a considerable problem, particularly for large

values of KI and Ai. For these values, the losses due to failure in probe attempts becomes significant

and the contribution of A", to the system wide loss rate is larger than that of A>1:2 . In fact for these

cases simulations can be performed in a shorter amount of time. Where possible we have provided

numerical values for the losses. For tight time constraints, e.g KI = 1.5 convergence can be achieved

relatively fast. These results are plotted in Figure 7. For a larger time constraint, K I = 3.0 (see Figure

8) convergence was slower. For example, LP = 5 and A, > 1.4 convergence of our numerical technique

posed a great problem. Nevertheless, for higher values of KI, we were able to obtain convergence for

values of At < 0.7 (see Figure 9). It should be pointed out that our technique thus does provides useful

results for most values of the practical range of system p.: .zctcr. .
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Figure T: Job loss for Probing for tasks with bounded queue time for KI = 1.5

For LP = 0, the probing policy reduces to NLS for which analytical solutions of the function f(w)

is available in 18]. The losses computed from equation 15, for Lp = 0 wert. identical to those obtianed

in 181.
As in the previous section the "Perfect LS" system is modelled by an M/M/20 queueing system.

with time constraint, K1. This is identical to the system where the jobs are scheduled among the node

processors using complete state information. In the ideal case this information is known at no cost

and incur no transfer delays. Thus the performance of the "ideal" LS policy provides an unattainable

lower bound.

Figure 7 plots the fraction of jobs lost for an extremely tight time constraint, K 1 = 1.5 time units,

and transfer delay of 0.1 time units. Note that since A = 1, 22.3% of the jobs have service times

greater than 1.5 and hence a minimum of 22.3 % jobs are always lost. The graph clearly shows the vaSt

improvement in the performance of the system, even for Lp = 1. For low arrival rates, A1 < 0 8 (w hich :

80% of the practical range interest of A,), LP = I achieves close to ideal perforrna,:cc The sinmulati,

results are plotted for L, = 1 and L, = 3. These were obtained un'thout imposing the poissn

assumption on the arrival rates of the probes (A,). The close match between the simulation results and

the numerical results thus justifies this assumption. In the simulations we have also accounted for the

fact that the state of the system may undergo a change during the period when a node first respond

-6 3-



11 3 0. t 2 2. 9. Ub -

0. 10

0. 05

0.100

0 0. 2 0. 4 0. 6 0.3a 1.0 ? 1.4 1. 
1ITFPNAL .JOB ARRIVAL fRTE

Figure 8: Job loss for Probing for tasks with bounded queue time for KI =3.0

K 5 0. K 2 S. 9. N U I
0. 20~

0.1

Of AOBS 0. 10
L.051

0. 05

0 0.2 0. 4 0. 6 0.8a 1.0 . 1.4 1. 
(IERNAL .JOB ARRIVAL RATE

Figure 9: Job loss for Probing for tasks with bounded waiting time for KI = 6.0

-04-



positively to a probe and the arrival of the job.

Figure 8 shows the performance of the LS policies for K! 1 3.0. For this value of the time constraint,

only 4.5 % of the jobs are lost due to the large service times (> 3.0). Accordingly, load sharing plays
an important role in preventing losses even at low values of A,. For A, < 0.8 we see that Lp = 3 gives

rise to losses that are close to the ideal. Note that the probe limit required is larger, than for KI - 5.
This is due to the fact that a larger percentage of the jobs which cannot be locally processed are now

eligible for transfer. Also since the time constraint is larger more external jobs can be accepted by a

node thus increasing its unfinished work load. Values obtained via simulations are plotted for LP = 3.

Figure 9 plots the loss incurred by the system for a much more relaxec time constraint, K I = 6.0.
As mentioned earlier, we were able to obtain results for values of At > 0.7. Surprisingly, we see that
with Lp = 3 the losses incurred are close to ideal for A, < 0.8.

A common trend observed in all the performance curves is that the probing policy with probe limit

of one achieves a great reduction in the losses over the NLS policy for a wide range of At. Further
improvement in the performance is obtained by using L, = 3 and we see that this value of the probe

limit reduces the los-ees significantly over those obtained with L. = 1, particularly for larger values of

At. But note that this reduction is less. By comparing the graphs for L. = 3 and L. = 5 particularly

for K1 = 6.0 we note that choosing higher values of Lp provides only a marginal improvement. This

observation only evrves to strengthen our claim that relatively small probe limits are adequate.

Comparing the losses experienced by real-time system with the two classes of tasks in Figures 3, 7
and 9, we observe that the losses are significantly smaller (for equal arrival rates and comparable time

constraints) in for the system in which jobs must complete execution within the fixed time limit. This

is true since all jobs with large service times are filtered out, allowing for a larger number of shorter

jobs to be processed locally. The reverse holds for tasks with bounded queue time. A large job greatly
increases the unfinished work in the system, thus preventing all jobs which arrive during its residency

in system from executing locally. As such, the average waiting time of bounded-queueing-time jobs ,
with time contraint K 1, will be larger for than that of bounded-waiting-time jobs, with time constraint,

Kl+.

6 Conclusions

In this paper, we have examined the rtlative performance of several different decentralized ap-

proaches towards load sharing in order to address the question of determining the appropriate level

of ccmplexity for load sharing algorithms in a distributed real-time environment. Queueing theoretic

models were developed to quantitatively assess the performance of two relatively simple approaches

towards load sharing as well as the bounding case of no load sharing. The "ideal" case of load sharing

with perfect information and no transfer delays was studied through simulation. The assumptions and
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approximations made in our analysis were validated through simulation.

A major conclusion of this study of real-time LS approaches is complementary to that previously

established for non-real-time systems 121,71: simple approaches, which use a minimum amount of global

state information and involve very simple decision mechanisms, can often achieve a performance level

close to that of a theoretically optimum real-time load sharing algorithm. A corollary then is that for

all but the tightest of time constraints (e.g., values of the time constraint, KI, less than the average

job service time), a more sophisticated approach towards real-time load sharing can often result in

only a small marginal performance improvement over the extremely simple load sharing algorithms. In

particular, it was shown that a simple probing approach using a small probe limit, performed close to

optimal over a wide range of arrival rates and for all but the most stringent time constraints.

We believe that future work in this area may be directed towards extending and generalizing the

results presented in this paper. In particular, it is of interest to develop performance models for

systems in which arriving jobs may have a deadline drawn from additional deadline distributions and

again assess the appropriate level of complexity for load sharing algorithms in these cases. In would

also be of interest to consider the local scheduling of jobs to processors in these cases.
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Appendix A : Derivation of Equation 2, 11, 12 Using Level Crossing [41 [61
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Figure 10: Level Crossing In the region w < K2

As shown in figure 10, if we plot the unfinished work in the generic queue in figure 2 as a function

of time, we obtain a "sawtooth" line, where the vertical jumps represent increments of work brought

to the queue by an arriving customer and the slope of the decreasing sections of the line is -1. The

point at which an increasing or decreasing section of the sawtooth line intersects a horizontal line of

height w is referred to as an "upcrossing" or "downcrossing" at w, respectively.

A major result of level crossing states that the density function, f(w), of the "virtual waiting time"

(i.e, the total unfinished work in the queueing system) is equal to the rate at which downcrossings cross

a line of constant height, w, and that for ergodic systems, the rate of downcrossings equals the rate of

upcrossings through this line (41 161.

Tasks with Bounded Queueng Time:

In order to determine f (w) in the region w < K2, we note that an upcrosaing occurs at w when

an arrival to the generic queue finds some amount, u (u 5 w), of unfinished work in the queue upon

its arrival and itselh joins the queue and brings in an amount of work greater than w - u. If B(x) is

the PDF of the service time demands of an arriving customer, then the probability that the amount

of work brought in by an arriving customer is greater than w - u is simply 1 - B(w - u), and the rate

of upcrossings at w in our generic queue is given by

rate of upcrossings = (A1 + A2) L(I - B(w - u))f(u)du

Equating the rate of upcrossings to f (w), the rate of down crossings immediately gives equation 1 in

the region w < K2.
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In order to determine f(w) in the region K2 < w < K1, we separately consider upcrossings due to

arrivals at the lower and upper queues in figure 2. Following an identical argument as above, the rate

of upcrossings at w due to arrivats at the lower queue is given by:

rate of upcrosainga due to arrivala at lower queue = Al (i - B(w - u))f(u)du

Note that a job arriving at the upper queue will only join the queue if it finds an amount of unfinished

work, u, less than K2. The rate of upcrossings due to arrivals at the upper queue is thus given by:

rate of upcroaainga due to arrivals at upper queue = A2 f (1 - B(w - u))f(u)du

Equating the rate of upcrossings and t(w), the rate of down crossings at w, immediately yields

equation 2.

Tasks with Bounded Waiting Time:

Following the above arguments, for 0 < w < K2, a job arriving at the lower queue will give rise to

an upcrossing from some level u (< w), iff the amount of work brought in by the job exceeds w - u, but

is less K1 - u (otherwise the job's deadline cannot be met). Since B(z) is the PDF of jobs arriving at

the lower queue, the probability that an upcrossing occurs is, [B(KI - u) - B(w - u)jf (u)du. Similarly,

for a job arriving in the upper queue the probability that an upcrossing occurs from the level u is,

[G(K2 - u) - G(w - u)]f(u)du. Therefore, the total rate of upcrossing is given by,

rate of upcrosaings due to an arrival = A {B(KI - u) - B(w - u)) duF(u)

+ A2 j {G(K2 - u) - G(w - u)} dF(u)

Equating the rate of down crossing with that of upcrossing yeilds Equation 11.

In the second region, K2 < w < KI, an uprcosaing from any level u (< w) will occur only when a

job arrives at the lower queue. Hence,

rate of upcrossings due to an arrival = A1 I {B(KI - u) - B(w - u)} dF(u)

Equation 12 is obtained by equating the rate of upcrossing and downcrossing.

Appendix B : Solution of Equation 3 and 11 and 12
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Tasks with Bounded Queuelng Time:

For the purpose of clarity let FI(w) denote the function F(w) in the region 0 < w < K2 and F2(w)

denote the function F(w) in the region K2 < w < KI. Consider equation 2 in the region 0 < w < K2:

_dF 1 (w) fW
div = (A1 + A2){ B(w - u)d.Ft(u) - Ft(w)}

Define fl(w) = _ Let F* denote the Laplace Transform of f 1(w). Taking the Laplace transform

and rearranging the terms we get (101,

F = (0) )(18)
) + (At + A2)(B'(s) - 1)

Assuming service times are exponentially distributed, we have B'(s) = p/(y + s). Thus,

F (s) = F (0+)

Fe 8 + (At + sAd)(;/ + 1)- 1)

On taking the inverse Laplace transform, we obtain an expression for fl(w). Then F1(w) is simply

given by:

Fj(w) =f iW(u)du

The solution to equation 2 in the region K2 < w < K1 is obtained in a similar manner. We can

rewrite the expression as:

dF2 (w) = (At + Al K B(w- u)d.Ft(u) - FI(K2)dw

+A { f B(w - u)dudF2(u) - f2 d.F2(u)}

Define g(w) = U(w - k2)f 2(w), where f2(w) is the density function in the region defined by, K2 <

w < KI and U(w - K2) is a step function. Let G*(s) be the Laplace transform of g(w). Then for

B'(s) = 4/(s + a) we get,

(A, + A2 )CC-oK
2e-*K2

G~)=
s +jU - At

where

C = F(0+)c(A,
+ x2)K 2
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On inverting the above transform we obtain an expression for 1'(W), in the region w > k2. The desired

result for F2(w) can now be easily derived since

rK2
F2(w) = Ia f,(u)du + ]K2 f2 (u)du

Note that although we have derived expressions for an exponentially distributed service time, the

above technique can be used to solve a general class of service time distribution.

Tasks with Bounded Waiting Time:

Separating the value of F(w) at zero (denoted by F(O)), Equations 11 and 12 can be rewritten as"

f(w) = A {B(KI) - B(w)} F(O) + A2 
( G(K2) - G(w)} F(O+ )

+ A, i+ {B(K1- u)- B(w- u)} ,(u)du

"+A,)f{r+G(K2 -u) -G (w -u)If (u) du 0O< w< K 2

f(w) = Al {B(Ki) - B(w)} F(O+ )

+ / {B(K-u)- B( -u)d)uF(u) K2 < w _K1

Similarly, equation 13 takes the form,

F(O + ) I + f f(u)du) =

Hence, with the knowledge of the values of the function in the interval (0, K 1, the two unknown

F(0+ ) & A2 can be computed from the equations 13 and 17.

The explicit form of the function G(z) was not used due to the poor convergence obtained while

solving for F(0+ ) & A2. A second level of iterations was introduced to compute G(z). Our algorithm

was as follows:

1. Initialise G(z) = B(z) 0 < z < KI

2. WHILE NOT DONE

" For the given value of G(z), compute the value of F(z) for z E [0, KI], using the method of

subsitution to solve the integral equations 11 and 12.

" Determine F(0 + ) & A2 (using IMSL routines) by solving equations 13 and 17.

" Compute the fraction of jobs lost using equation 16.
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*Compute the new G(X) from equation 14.

3. DONE = TRUE when three successive iterations give losses within 0. 1% of each other.
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AUGMENTED CHAIN ANALYSIS OF MARKOV AND SRMI-MA.KOV PROCESSES'

STEPHEN G. STRICKLAND and CHRISTOS G. CASSANDRAS
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

AIMTRACT
We preseitt a new method for estimating performance sensitivities, with respect to parameters
of interest, of Markov and (some) semi-Markov processes from information contained in a
single nominal sample realization. Given a nominal parameter value, we use a perturbation
of the parameter to define a perturbed system. We then construct what we call an augmented
chain which in effect allows us to construct perturbed realizations from nominal ones, and
hence compute sensitivities of any quantities measurable on these realisation. We show that
the 'observabilitym problem encountered in our earlier work can be overcome through an
appropriate transformation of the augmented chain and present some experimental results.

1 INTRODUCTION

In performance optimization problems involving discrete event dynamic systems, analytical expressions
of the performance measure (in terms of controllable parameters) generally do not exist. Gradient-based
optimization methods typically employed in such cases require the sensitivity (or partial derivative) of
the performance with respect to the parameter(s) over which the optimization is being performed. Tra-
ditionally, one resorts to simulation and uses a finite difference estimator to compute these sensitivities;
this requires two simulation runs for each parameter. Recently, several new approaches have been de-
veloped, which extract information from an observed nominal state trajectory of the system in question,
and directly estimate the sensitivity of the performance measure with respect to a parameter of inter-
est. These sample path based techniques include the Likelihood-Ratio Method 181,131 and Perturbation
Analysis (41,(S71. In general, these methods realise considerable computational savings as compared
to the two-simulation approach since they require only a single simulation run. More importantly, since
they involve only observed data, they may also be used in on-line or real-time control schemes.

This paper considers new sample path based method which has significant advantages in many
situations. One advantage of this approach is that nominal system parameters need not be known. Fur-
ther, the method can be applied to discrete (integer-valued) parameters (e.g. buffer capacities, routing
thresholds, customer class sizes) for which the performance measures are necessarily discontinuous.

The method presumes the existence of two Markov chains whose structure is known. We anuine
both represent the same underlying system of interest, but differ in the value of some parameter;, thus,
we refei' them as the nomind and perturbed chains. Observation of a sample realization of the nominal
system allows direct measurement of its sample performance. If we can at the same time estimate the
sample performance for a perturbed realization, then we can immediately compute a finite difference
sensitivity estimate. We accomplish this by using the event-driven nature of the underlying system to
construct an augmented chain related to the nominal and perturbed chains in the following two ways:
(1) The augmented chain is stockhetically similar to the perturbed chain in that the stationary state
probabilities of the perturbed chain are obtainable as the probabilities of appropriately defined aggregate
states in the augmented chain. (2) The augmented chain is observable with respect to the nominal chain
in that we can estimate the augmented chain state probabilities using information contained in a single
observed nominal realization.

In previous work III we developed a method for constructing an augmented chain which was al-
ways stochastically similar to both the nominal and the perturbed chains; however, it was not always
observable with respect to the nominal chain. We proposed a solution to this problem which involved
generating additional 'artificial" events to supplement those observed in the nominal sample path. This
requires, however, that we know or estimate the rate parameter associated with these events. In this
paper, using a more direct construction, we formalise the notion of observability and show that under
some gene.al conditions an obeervable augmented chain c,, always be ccnstructeil through a transfor-
mation of the initial augmented chain. We consider extensions to semi-Markov processes and present
sone experimental results.

tThis work is supported in part by the National Science Foundation under grant ECS-8O4GT6 and by the Rome Air
Development Center under contract F302602-81-C-0169
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2 DIRECT SYNTHESIS OF AUGMENTED CHAINS

In this section we extend our previous results [II by imposing an event structure on the Markov chains
under consideration. This allows us to obtain an augmented chain directly, as well as accomodate a
more general clam of Markov chains. In addition, it results in a more compact representation.

We assume that the Markov chains considered meet the following conditions:
(AI) There is a finite set of ewents, each transition defined in a chain is associated with a unique event.

Moreover, all transitions associated with a given event have the same rate (Le. the transition rate
is a function of the event type alone).

(A2) For each state, there is at most one outgoing transition corresponding to each event.

Remark: We can accomodate state dependent transition rates by expanding the number of event types.

2.1 Definitions and Notation

Consider a discrete event dynamic system, represented by {S, E, D), where S is a state space, E is a
set of events which cause all possible state transitions, and D is a transition function, D : S x E -- S.

Let E(s) denote the set of events which can occur when the system is in state 8; we will refer to
this as the feasible set of events at state s. Then, given s E S and some e e E, we define D(s, e) as

D(sc) destination state when e occurs in state s if • 6 E ! (a)D(,=)= 0 if c 0 V!(s)

If an event c 0 El(s) occurs at state a, the event is effectively ignored and the state is unchanged.
This is to be distinguished from the came of a self-loop transition, where D(s, e) = a for some event
e C E1 (s). Note that D(., c) also defines a destination mattriz describing the system.

A Markov chain a is obtained from the discrete event system definition above by requiring that the
events of each type constitute Poissmn processes, and by providing an intensity function F : E - R,
diaracterizing each of these processes. Thus, we may write a = (S, E, D, F).

Note that we can easily obtain the infinitesimal generator of a, Q, from D and F as

Y(1Q() (1)-~i sh Q(", t.) "i = "j

where Si, si E S, and we effectively sum the rates of all possible transitions from e, to si caused by
events in EI(s,) (6(-, .) is the indicator function: (z, y) - 1 if = - y and 0 otherwise).

2.2 Construction and Properties of Reduced Augmented Chains

Given the preceding notation, consider two Markov chains *I = (St, Ej, D 1 , F) and 012 = (S2, E-2 , D2, F2 ).
For convenience, we make the following additional assumption:

(A3) a, and 02 are finite, irreducible, and ergodic chains; hence, they have unique stationary state
probability vectors w 1 , W2, determined by QjW - 0, i = 1, 2.

We then define the Reduced Augmented Chain (RAC) (the term 'reduced' is used to distinguisIh this
augmented chain from the maximal augmented chain (MAC) defined in 111) corresponding to aL and
02, as a Markov chain

an = (Sn,En, Di, Fi)

where

SR = S, X S2

En = El u E.2
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and Dg is defined for each element (si, sy) E SR with si E S, and a, E Sa by

DL (.e), Di(a,,e)) if Di(si, e) 0 0, D 2 (Si, ) #0

D (sie), sy) if Da(s,e) 0 0, D-(e,e) 0Dnj(e1,ej),s°] (2)
(sD2(a,=)) if Df D1 (s,,c) - 0, D2(s,e) 1 0

0. ifD,(se) = 0, D2(.,,) =0

and finally, F is given by
F F(e) ife EL(Pit(C)= P2,(C) if4e ,A,¢E (30)

It is shown in 121 that this definition results in a RAC identical to that obtained in our earlier work
Ill. A key feature of a 8z is that it generally contains transient states, which can be removed since we
are interested in the stationary state probabilities. A simple algorithm for constructing directly the
irreducible, ergodic sub-chain of the IAC (i.e. the RAC with transient states removed), given an initial
state, is also given in 121. Hereafter, when referring to the AC, we will assume that all transient states
have been removed; thus, anj refers to the irreducible set of states containint a given initial state.

An example of a RAC construction is shown in Figure 1, where we show the RAC which results
from a nominal chain representing a homogeneous M/M/1/1 queneing system, with transition rates X
(for arrival events, a) and p (for departure events, d), and a perturbed chain representing an M/MI1/2
system with the same transition rates The elements S, E, D, and F of our representation are shown
along with the corresponding state diagrams. Note that the construction includes two transient states,
which are ignored.

Sj=(%o. sl). F-t=(& d), FI(a)=X, FI(d)=;L

1. z1 IS s==IO. s, E1 e d). =()-X .2(d)=A

st

Figure 1: RAs For The MIMIll, MIM/ift S(.tdm Peir

In order to provide a more compact representation for D8 , let us define

D~(~.e = D1 (o,,e) if D,(s=,)#0()(hs e 5, otherwise4
D~ns/,)  = { O(°ye)if D 2 (., e) 0

= 2 (,c othaerwise (5)

which allows us to rewrite (2) I

Dnl(s.,a,),,e = (e)h(.,), Dr(,, i)) (6)
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2.2.1 The Stochastic Similarity Property

As previously mentioned, our motivation for constructing OR is that it contains information about the
joint behavior of a, and a2. In fact, if St is appropriately partitioned, OR can be transformed into
a Markov chain with the same stationary state probability vector as either a or a2. We refer to this
property as eto"Aati similarin.

Definition : Let a = (S, E, D, F) and ao = (So, Eo, Do, FA) be two Markov chains, with stationary
state probability vectors w and so respectively, and dim(S)niN. The Markov chain a is said to be
Stochastically similar to ao with respect to P iff there exists a partition P = (pi)i , ..N of S such that

r(p,) = wro(s,) for all o, E S

Clearly, the partition P results in a Markov chain Op. Letting Qp and Qo denote the infinitesimal
generators of at and ao, an alternative definition is to require that Qp = Qo.

Remark : Stochastic similarity implies that the transitions between the partition sets pi E P (as
applied to So) constitute a realization of 0o. Thus we can explicitly extract a realization of 0o from the
observed realization of a by simply ignoring all transitions internal to any pi.

Given the definition of stochastic similarity above, we now wish to establish the fact that the RAC,
an, defined above, is indeed stochastically similar to both a, and 02. Titus, we will show that elements
of SR can be aggregated in ways that allow us to express the stationary state probabilities of a, and
a2 in terms of such 'aggregate' or "composite' states. The following lemma identifies the fundamental
property of a which makes this possible.

Lemma 1: Let a = (S, E, D, F) and 00 = (So, E, Do, Fo) be two Markov chains, with infinitesimal
generators Q and Qo respectively, and ctim(So)=N. If there exists a partition of S given by

P = (p,, i I ,-., N

such that for all a 4E pi and j 0 i,

E Q(a, b) = Qo(S,, Si) (7)

where sa, si E So, then a is stochastically similar to ao with respect to P.

Proof: (see (21)
We shall now use this lcmma to construct appropriate partitions of the RAC defined above, and

establish stochastic similarity properties with al and a2. First, as in our earlier work f11, we define the
following partitions of a:

P, = {ri:(soieJE ruifs=iE S1,siES 2} (8)

. . :(sk, si) c .is = s S2 , skES (9)

The definition of Sn as the cartesian product S, x S2 gives it a rectangular structure with the 'rows'
associated with elements of S, and the "columns' associated with the elements of S2. The partitions
above simply formalise this fact. Thus, we will refer to r, E Pr as the Yh row' of aR and ci E P, as
the 'ith column' of OR.

In the following result, we show that the partitions P, and P, allow us to establish that an is
itochastically similar to at and 02, respectively.

Theorem 1: Let Snz be partitioned through P, and P.. Then, an is stochastically similar to a,
with respect to P., and to 02 with resp to P., i.e.

wr(ri) = rt(si) for all s E SL (10)

-n(c,) = r2 (s,) for all s, E S2 (011)

Proof: (using Lemma 1; see 121).
The key implication is that a single realization of an provides the same infornation as two distinct

realizations, one of a, and the other of 02. Thus, we can use such a realization to obtain infonnation
regarding the behavior of both at and 02. Suppose that a, represents a Markov chain model of a
nominal system, and let 02 be identical to OL except for some specified parameter perturbation. Thus,
a2 corresponds to a perturbed system. In this context, a realization of an provides sufficent information
to estimate performance sensitivities of the nominal system with respect to the perturbed parameter.
Neither aO nor a2 need be observed.
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2.2.2 The Observability Property

As already mentioned, the stochastic similarity property of the RAC, a, presented in Theorem 1,
is of interest if sample paths of aR can be conveniently constructed, given sample paths of at ( the
directly observable Markov chain). This is indeed possible under an o&ervabiitly condition, which we
shall formalize in this section.

Consider a Markov chain ao = (So, E,, Do, Fn) and let so E So be a specified iniia state. Then,
for any event sequence e = (so, t, . . .}, with ej E - for all i, there is a corresponding state sequence
a = {so,sis,...), with si E So for all i. Thus, (soe) describes a stochastic realization of ao in terms
of the sequence of states visited. Note that .i,i = 1,2,... represents the state of the system just after

event ei occurs. In case e 0 El(s), we have si = s.-t and no actual transition takes place.
Now suppose we consider a second Markov chain a = (S, E, D, F), and specify an initial state

to E S. Given ite same event sequence e, we may generate a state sequence t = (to, t,.... ) with ti e S
for all i. We define the notion of observability in terms of the relationship between El (si), the feasible
set of events causing transitions when ao is in state si, and Ef(t), the corresponding feasible set of
events for ti E S.

Definition : Let ao = (So, Eo, Do, Fo) and a = (5, E, D, F1 be two Markov chains with specified
initial states so, E S, and to E S respectively. Let a = (ei), i = 0, 1,... be any event sequence with
e, E E,, for all i, and a = (si), 9 = (t)} the corresponding state sequences for ao,a. Then,

1. An event e E E (or the corresponding state transition from t. to 4t-+) is said to be obseruable with
respect to ao iff

e E V,(t,) =*e E'(si) and F(e) = Fo(e) (12)

for any i = 0, 1,...

2. The chain a is said to be observable with respect to ao if[ e E Ef (4) is observable for all i = 0, 1,...
and all event sequences e

ReMark : If a is stochastically similar to *0 with respect to some partition P, the definition is
simplified by virtue of the fact that P constrains the sequence t in terms of s. Thus, if a = at, when
o is in state si E So, ait is in state (ss8j) e Sit (for some s,) by construction. This is true for all

event sequencer e used to generate s. Therefore, in view of (2) and (3), the observability condition for
an with respect to the nominal chain at becomes

EI(,,AJ !;; E t (8,) for an e 6 , (e,,8j) E Si (13)

or equivalently,
DRi(s,, e l A 0 z.Dt(sie) 70 for alle ER (14)

In the example of Figure 1, if the M/M/1/1 chain is observed, then RAC state sot has an unob-
servable transition-of rate p to state son, since the nominal state corresponding to son (so E SO) has no
feasible i transition (no departure can occur when the system is empty). Note that if the M/M/i/2
chain were observed, then all events/transitions would be observable.

The definition above specifies sufficient conditions for constructing a realization of a front an ob-
served realization of ao. The feasible set of a state s C S, along with F(e) for all d E EJ(s), define
the parameter of the holding time distribution (which is necessarily exponential) of the state, as well
as the distribution of the type of the next event. Thus we can view observability as a condition which
guarantees that the sequence of holding times and events which are observed in the realization of a,
have the correct distributions to be used in constructing a realization of a (see 121).

3 FULLY OBSERVABLE REDUCED AUGMENTED CHAINS

As stated previously, our goal is the construction of a RAC, af, which is both observable with respect to
01 and stochastically similar to Q2. While an, as defined in Section 2.2, is always stochastically similar
to a-, it will often trot be observable with respect to aI due to the constraining nature of the observability
colnitions. lit this section, we show that, subject to some general conditions, we can transfonn ap to
a new RAC, a' , which is fully observable with respect to a,, and retaiis a tiodified forni e stochastic
similarity, which we shall call C-uimilarity. In brief, we decompose the states of the RAC in a way that
allows us to both eliminate the unobservable transitions and express the perturbed state probabilities
it terms of aggregate states created by the decompositio,,.
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3.1 C-Similarity
We begin by extending the definition of stochastic similarity given in section 2.2.1.

Deli t lion : Let a = (S, E, D, F) and ao = (So, Fv, Do, Fo' be two Markov chains with stationary
state probability vectors w and wo respectively, and dim(So)=N. The Markov chain a is said to be f-
simslar to ao with respect to V = (Vi)....j iff there exists a set V C S and a constant C E (0, 11 such
that:

S(V) = Ero(s,) for all s, E So

The next Lemma is a generalization of Lemma 1, and establishes conditions under which two chains
are f-similar. In what follows, given a state space S, a E S, and A C S, we shall use Q(s, A) to denote
CteA Q(s, t). We shall also denote the complement of A with respect to S by A.

Lemma 2: Let a = (S, E, D, F) and ao = (So, E6, Do, Fo} be two Markov chains with infinitesimal
generators Q and Qo respectively, and dinz(So)=N. Let P be a partition of S such that

P = V u W = V)} ..... , Vu {Wh ...... V

and the following conditions hold for all i = 1, ... , N:

(C1) Q(s, W,) = Q(s, V), for all s E W,,

(C2) Q(8, V) + Q(S, W,) = QO(s-k. i), for all a E Vk, k # i

(C3) Wi is not an absorbing aggregate state

Then, a is f-similar to Go with respect to V, Le.

W(V,) =

and f is given by
E = s.{V) = M -R(W}

Proof : (by flow balancing around each Vi and W,; see 121).
Remark : Lemma 1 may be viewed as a special case of Lemma 2, where V S and Vi = pi.

In this case = 1 and condition (C2) reduces to (7). Note that no assumptions are made regarding
transitions originating in each Wi, except that any terminal states lying outside Wi must belong to the
corresponding V.

In what follows, we will decompose Si, the state space of an defined in section 2.2, so as to define
a partition satisfying the conditions of Lemma 2, and also where all unobservable transitions originate
within a Wi set. Using this partition, we define a transformation of aR yielding a new RAC, a' , which
is observable with respect to a1 (nominal chain) and E-similar to a 2 (perturbed chain).

3.2 Decomposing the RAC: Active and Passive States

Without loss of generality, we assume that a, is the nominal chain (recall that we denote the nominal
and perturbed chairs, and the RAC by al,al, ct, respectively). Let U, denote the set of RAC states in
the composite state ci (equivalently, the 0'A column) defined in (9) which emit unobservable transitions,
and let R = ci - Vi.

Let us attach a binary indicator to the state of an which takes on two values: active and passive and
is defined as follows. We assume the state is initially active at tle start of the sample path. Entering any
U while the state is active causes a switch to the passive state. The indicator remains passive until the
system enters the R, corresponding to the Ui which initiated the passive state. At this point it returns
to the active state. Note that this indicator has no effect on the evolution of the original state vector.
Further, entering any U; while in the passive state has no effect on the binary indicator.

The RAC states s E Si are thus decomposed into distinct component states (,,sv, " 1,J sr,,...)
defined by a,, = s, given the system is in the active state, and s;, = s, given the system is in the passive
stete as a result of entering U,.

Based on this decomposition, let us define an aggregate state Wi as the set of all tt' passive
comlpontents of states s E Si, i.e.

W -- U s fort 1,2,...
s E S1
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Figure 2: The RAC State T jectory Decomposition

Figure 3: Active and Pausive State Space Decomposition

In effect, the RAC enters Wi when it enters U while in the active state, and remains in Wi until the next
visit to R?. Thus, the RAC state trajectory can be viewed as a sequence of active segments connected
by visits to a single Wi (Figure 2). Let us also use Vi to denote the set of all active components of states

a e R, and let V = UiV. This defines the most important decomposition of SR-into active and passive

states (see Figure 3)-as

S,, Us-U Us =U v' U Uwvu= W (15)

The next result establishes the fact that this decomposition of Sq satisfies the conditions of Lemma
2, and, therefore, allows a to be f-similar to a 2 with respect to the set of active states, V.

Lemma S: Given the partition VUW defined by (IS), if Vi i 0 for all i, then a is i-similar to a2

with respect to V, Le.

wR( =C - 2(sj)a with rR(V) = -R(W)

Proof : (using I mma 2; see 121).
Rmark : Lemmn.. 3 establishes C-simsarity between aR and a2 with respect to the set of active

states V. The portions of the nominal trajectory during which the system occupies active states (elements
of V) effectively constitute a realization of the perturbed system (this is similar to the "cut-and-paste
idea of 171). Thus we use observations made during these portions to estimate the perturbed state
probabilities. The fraction of the total observation interval which these portions constituite is given by
C. where 0 < _ 1. For the fastest possible convergence of our estimates, we clearly want f as close to
1 as possible.

Note that, by construction, all unobservable transitions originate in W (if none exist, then W = 0
and f = 1). Thus, our next objective is to transform acz so as %o eliminate all unobservable transitions
without violating (Cl)-(C3).

3.3 The Observability Transformation

In this section we present our main result which states that under certain general conditions, there
exists a transformation of OR yielding a new RAC, a', which is both observable with respect to aL and
C-1imilar to 01.

We begin by defining a state transition transformation for a Markov chain a = (S, E, D, Fl. Let 0
denote the set of all state transitions defined in a, i.e.

f = (f(,t),e: .s, ES, e E, D(s,) =t, F() > 0}

Then, a satet tra.uition trauform~lion is defined to be a mapping:

T:$-- (S x S)uO

where the mapping to 0 corresponds to removal of a transition 1(s, t), el. For simplicity, we shall limit
ourselves to transforming traisitiosis caused by a single event between each pair of states, and not
affecting the transition rate of this event. Titus, we denote this transformation by

T(s,t) = (u,u) or T(3,L) =
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where (u, V) E (S x S), and the associated event is implied.
Now, we seek a transformation T* which, when applied to all state transitions of an, generates a

RAC observable with respect to a, and also f-4imilar to a2.
Theorem 2: Let $a be the set of state transitions in act, and T a transformation applied to

(., t) E 4 n such that

T'(8, t) f 0 if (,. t) is unobservable
= (8,uv), V E(Rj n V) if s=W, t E ry, i,j=,..N

If Vi 4- 0 for all i, the resulting RAC, a', is observable with respect to at and -sinilar to a with
respect toV.

Proof: (see 121).
In Figure 4 we show the application of this transformation to the example of Figure 1.

sit X S12 w'-]LS1

I a

.. Vt

Figure 4: Obseruability Troaformation of the MIM/ll, MIM/lI2 RAC

Remark: Note that all but one of the conditions required are met either directly or indirectly by
the construction of an. The only 'real* condition is that Vi 9& 0, for all i. This is equivalent to requiring
that for each state s E S2, there exist at least ont state t E St such that E'(s) 9 Ef(t). Also, note that
simply removing the unobservable transitions is generally not sufficient since (as in our exazuple--ee
Figure 4) it may make one or more W. sets absorbing.

4 Extension To Semi-Markov Processes

We have investigated extensions of our method to semi-Markov processes via two directions. The first
utilizes a discrete-time Markov chain imbedded in a continuous-time semi-Markov process. This only
requires extending our existing methodology to discrete-time Markov chains. The second approach
involves applying our continuous-time approach directly, simply relaxing the requirement that the event
streams constitute Poisson processes. For certain restricted classes of senti-Markov processes, we obtain
results equivalent to the pure Markovian case.

4.1 Imbedded RACs

The imbedded Markov chain approach is well known. We need only extend our augmented chain method
to discrete-tine Markov chains. While there are some complications due to the differing normalization
conditions, this can be done. In Section 5 we apply the imbedded chain approach to the M/GI/I/K
queueing system. We note in passing that the utility of the imbedded chain approach rests on the
ability to relate characteristics of the inbedded chain to those of the continuous-time chain in which
it is imbedded. In the case of the M/GI/i/K system, we are fortunate in that the stationary state
probabilities of the (intbedded) discrete-time and continuous-time systems are identical. This is generally
clot the case.

4.2 Relaxation of the Markovian Assumption

In this approach, which we apply to the CI/M/1/K system in Section 5, we simply relax the Markovian
requirement for one or more of the event processes (allowing thent to be arbitrarily distributed). lit ionie
cass (e.g. the G/M/I/K systent) the efficacy of the method is unaffected by this relaxation. While
this represeits ongoing research, the basic idea can be outlined as follows.

Consider Lte problenm of constructing a perturbed realization in a simulation environment. Given
an initial state, our task can be viewed as one of constructinmg a Ostochastically correct* sequence of state
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holding-times (ro, ri,...), with associated terminating events (so, e, ... ). Given a model of the system,
this event sequence uniquely determines the state sequence. At each iteration i, we use ei to determine
the next state, and repeat the process. In a simulation environment, we can generate a (ri, eL) pair which

is 'stochastically correct" by generating an exponentially distributed random number tk for each feasible

event Ck (parameterised by the event rate) and setting r'+1 = min {tk) and es j = the associated event.

The augmented chain essentially lets the nominal system perform this operation. If the current nominal
state has the same feasible set as the current perturbed state (in the construction) then the observed
(r, ti) pair has the appropriate stochastic characteristics required by the perturbed realization. This

is what occurs when the RAC is in the active state. If the nominal feasible set does not match that

of the perturbed state, we suspend the perturbed construction until the nominal system enters a state
which does match that of the perturbed state, at which point we proceed as before. Suspension of
the construction corresponds to the RAC entering the passive state via some Ui; ente'ring a nominal
state where we can restart the construction corresponds to the RAC re-entering the active state via the

corresponding V.
In a non-Markovian environment, things are much more difficult because the (ri, e,) statistics are

not functions of the state alone but also of the elapsed times since the previous occurrence of each
non-Markovian event. In sone cases, however, we can still extract nominal (ri, ei) pairs with the correct
statistics. While a complete discussion is beyond the scope of this paper, this appears to be possible
only when we have no more than one non-Markovian event process active at any time, when each U;
with an unobservable non-Markovian event is reachable only by transitions corresponding to that event,
and where each corresponding V is reachable by transitions corresponding to the same event. Such a
case is the M/GI/1/K system.

5 Experimental Results

In this section we provide experimental results for three variations on the single server queueing system:

the M/M/1/K, M/GI/l/K, and GI/M/I/K systems (more extensive results are contained in 121). In
each case considered below, K- 2, the "Gi" distribution is deterministic, and the utilization is I (i-e.
A = p). The perturbed systems represent a change in queue capacity of +1. The performance measures

considered are: the utilization, U, the mean queue length, NQ, and the mean delay (or system time),
D. We applied the following variations of our augmented chain approack:

1. URAC/K where we use the original, unobservable RAC of Section 2 and handle un-
observable transitions by generating artifcial events, when required, using a random
number generator parameterized by the event rate wkich ws assume is knoun.

2. UR.AC/E which is identical to the URAC/K case except that we assume the event rate
is unknown, thus we estimate it using observations made in the nominal path.

3. IRAC where we use an imbedded discrete-time RAC.

4. TRAC where we use the observability transformation of Section 4 to obtain a fully
observable RAC.

5. SIM which is a straightforward simulation of the perturbed chain.

£

UtU

miwe"14 of £OtlAt.

.S..... .. . . J..> .. '...

Figure 5: M/M/i/2 Utlization, Esimates Figure 6: 0OhMI/f Mean-Qutas-Lecngck Estvates
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Figutre 7: M/GI/I/2 Mca n-Queu-Len#I and Delay Estimates

While all thene techniques can be applied to Markov processes, not all can be applied to tlhe same cla.s
of seni-Markov prcess se 2).

For the M/M[I[2 system, we applied the URAC/K, URAC/E, TRAC, and SIM methods. In Figure
5 we show the resulting estimates of perturbed utilization as a function of the number of nominal arrivals.
Also shown are the corresponding results using a straightforward simulation of the perturbed system.
All curves are the average of 10 runs. Note that there is little degradation ssociated with estimating
the artificial pai-meter from the nominal path as compared to a priori knowledge. Alko note that the
convergence of the observability-trwaformation method is slower than the other methods, indicating

that f < 1.
We applied the and URAC/K, URAC/E, and SIM methods to the GI/M/I[2 system and te

IRAC, TRAC, and SIM methods to the M/GI/I/2 system; the resulting estimates (averages of 10 runs)
of perturbed miean-queue-length and delay(for the M/Gl only) for these two systems are plotted versus
the number of arrivals in Figures 5 and 7, respectively. The convergence of all methods is comparable.
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Abstract

In this paper a model of a shared memory multiprocessor that executes fork-join
parallel programs as a bulk ar-rival MX/M/c quetucing system is developed. Here a fork-
join job is one that Consists Of a set of X tasks. All of the tasks arrive simultaneously
to the system and the job is assumed to complete when the last task completes. We
deve:-p tight upper and lower bounds for the mean response time of such programs
wlien the scheduling discipline is processor sharing under the assitnpt ioiis of exponential
tas!k -service tinet .%lid .1 Poisn jnb a-rrival proress. We. stuidv- fwn 01:11..~ ile
po'licies, MWli 4 alled NAi sichedumniq procte sir cli arilig and Ithe -.I he.i t.alled )1)1 .. A duli 'q

processor slianig. The first p~olicy schediles tasks independenttly of each other aind
allows parallel execution, whereas the seconid policy schedleIs enttire job-, as a unit and

'Thip work was supported tin pa.rt by the National Science Foundation under granrt MCS-91042(13 .ind -v
RADC under contract Rl-44d9ojX and F'302602-81-C-0169.
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thereby does not allow parallel execution of an individual program. We find that tile
job scheduling policy exhibits better performance than task scheduling only on systems
with a small number of processors, where the system is operating at high loads and
is executing programs that can sustain a large degree of parallelism. Consequently, ill
general, task scheduling outperforms job scheduling. We also compare the performance
of the processor sharing policy with first come first serve. We find that first come first
serve exhibits better performance over a wide range of systems. The paper also studies
the performance of processor sharing and first come first serve with two classes of jobs,
and when a specific number of processors is statically assigned to each of these classes.
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1 Introduction

With the advent of multiprocessorsiOst861 and programming languages that support parallel

programming, (e.g., Concurrent Pascal [Han751, CSP[Hoa851, and Ada 1Pyl811) there is

increasing interest in modeling the performance of parallel programs. In this paper, we

evaluate the performance of a particular type of parallel program, a fork-join job, on a

multiprocessor consisting of identical processors when the service discipline is processor

sharing. In our model a fork-join job is composed of a set of tasks each of which can be

scheduled independently of the others at any processor. All tasks in a given job arrive

simultaneously to the system. The job completes when the last task completes.

The performance of parallel programs such as fork-join jobs is significantly affected by the

choice of policy that is used to schedule tasks. We analyze the performance of a processor

sharing (PS) policy that schedules tasks of a job independently of each other. We refer to

this policy as task scheduling PS, TS-PS. We compare the performance of this TS-PS policy

to that of a second PS policy that schedules entire jobs (as a single unit) independently

of each other. We refer to this policy as job scheduling PS, JS-PS. The TS-PS policy is

unaware that jobs exist whereas the JS-PS policy is unaware that tasks exist. We also

compare the performance of TS-PS and JS-PS to the first come first serve (FCFS) policy.

In these comparisons we consider different numbers of processors, sizes of fork-join jobs,

multiple classes, and dedicated assignments of the processors of the multiprocessor to the

different classes.

In the course of our study, we develop upper and lower bounds on the mean fork-join job

response times under TS-PS. These bounds are generally very tight and we approximate

the mean job response time by taking the average of the two bounds. Analyses of the other

two policies, JS-PS and FCFS have already appeared in the literature ([RTS87,NTT87]).

We make the following observations from our study.

* FCFS provides better performance than TS-PS or JS-PS for a wide range of workloads

and number of processors. It appears that the advantages that FCFS has over PS in
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single processor systems carries over to multiprocessors executing parallel programs.

This carries the implication that one should choose large quantum sizes for round

robin policies operating on multiprocessors.

" TS-PS performs better than JS-PS most of the time. However, if the number of

processors is small, the degree of parallelism high, and the processor utilization is

high, JS-PS can perform better. This same phenomenon was observed on single

processors in an earliei study, (RTS871.

" It may be useful to partition the processors in a multiprocessor into separate pools to

handle different classes of jobs rather than having the jobs share the processors. We

observe that jobs requiring the least amount of computation can benefit from such a

partition.

In the remainder of this section we briefly review earlier work and outline the remainder

of this paper. Processor-sharing has been addressed in the literature in several ways since

its introduction [Kle641. A survey of processor-sharing results may be found in [Kle761.

An exact analysis of the TS-PS policy operating on a single processor was performed by

Rommel, et al. IRTS871. Unfortunately, the approach used in that paper does not extend

to multiple processors. This study first demonstrated that job scheduling can give better

performance than task scheduling. In addition, there is a growing literature on fork-join

queueing systems IBM85,BMT87,NT85]. Although these referenced papers analyze fork-

join jobs, their analysis differs from that studied in this paper in that processors are allocated

to specific tasks prior to execution. We are interested in systems where processors can be

dynamically allocated to different tasks.

The format of this paper is as follows. We describe the queueing system under consideration

in Section 2. Section 3 contains expressions for the upper and lower bounds on the mean

response time for the TS-PS scheduling policy along with an approximate analysis of that

policy. This is followed by our numerical results in Section 4. Finally, in Section 5 we

summarize the results of the paper.
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2 Model Description

We consider a system of c identical processors that serve a single queue. Fork-join jobs

enter the system according to a Poisson process with parameter A. A fork-join job consists

of X tasks that can be processed independently of each other where X is a random variable

(r.v.) with probability distribution ai = PIX = t], % = 1, 2,--.. The service time required

by a task is assumed to be an exponential r.v. with parameter p and is independent of the

service requirements of all other tasks.

We are interested in the steady state behavior of this system when operating under the

task scheduling processor sharing (TS-PS) and the job scheduling processor sharing (JS-

PS) policies. As described in section 1, TS-PS is a policy that performs processor sharing

at the task level and JS-PS is a policy that performs processor sharing at the job level.

Thus, if the system contains two jobs, one with one task, the other with three tasks, then

TS-PS provides an equal amount of service to each task and is capable of utilizing four

processors. In this same example JS-PS sees two jobs, one whose service time is that of a

single task, the other whose service time is the sum of the service times of the three tasks.

JS-PS provides equal service to the two jobs and is only able to utilize two processors.

In both cases, we focus on the response time of a random job, i.e., the interval of time

measured from the arrival of a job until the service completion of the last task associated

with that job. The system can be visualized as a queue for tasks, c servers, and a waiting

area for tasks that have completed service but are awaiting the completion of the last

task associated with the job (Figure 1). This last queue is sometimes referred to as the

eynchronization queue. We denote this response time as T.

3 Analysis

In this section we concern ourselves with obtaining the mean response time EIT] under

both TS-PS and JS-PS. We consider JS-PS first as it is the simplest to analyze.
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Figure 1: System Model
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3.1 The JS-PS policy

Let L denote the number of jobs in the system under JS-PS. The distribution of L is

identical to the queue length distribution of an MIMIc system with arrival rate A and

average service time E[X]//. Consequently, the average response time, Ej!', is (A.I1781)

E[T] = /U(E[XI/I)
u!/c,1! + (1 - ,,1) a: u/n!1(1 - u/c) (1)

where u = AE[XIm. E[T] = E[LIIA.

3.2 The TS-PS policy

To analyze the TS-PS policy, consider the delay that a randomly selected job incurs. LeL

J denote this job. Let N be a r.v. that denotes the number of tasks in the system

at the time that J arrives. Let ir = PIN = n], n = 0, 1,.-- denote the stationary

distribution of N. Let t,n denote the mean response time of J conditioned on the event

that J consists of s tasks and that the bystem contains X = n tasks ilL the time of its

arrival, i.e. t,, = EITIX = 1, N = n]. We can write the following expression for the mean

job response time,

EITIX = fl= Z rt,,, i= 1,... (2)
n0

Removal of conditioning on the number of tasks in J yields
00

E[T = E Z ,E[TIX = i]. (3)
s=1

As described above, the number of tasks in the system is described by a Markov process.

Fortunately, the behavior of this Markov process is independent of the policy used to sched-

ule tasks so long as the policy does not schedule jobs based on service time information.

Consequently, the distribution of N is identical to that for a bulk arrival MX/M/c system

that schedules tasks in a FCFS manner. Expressions for the queue length distribution for

this system can be fcund in earlier papers [CT83,Yao85,NTT871 and are omitted here.
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Figure 2: State diagram for the exact system when jobs consist of 2 tasks.

We focus on the conditional expectations ti. We define a Markov Chain with state (Itp M)

with infinitesimal generator Q where It is the number of tasks remaining in J at time t

after J is introduced at time 0, Mt is the number of tasks in the system at time t that are

not part of J, and Q = where

T.'+, n - n = m,

-1 m= , m n - 1,
= i=,m > n, (4)

-(A+A+,), i=l, m=n,
0 otherwise

where
{kti, k = 1,.'-, c

Akl C, k = c+ l,---.

The resulting chain is transient. Figure 2 illustrates the associated state diagram when all

jobs consist of exactly 2 tasks.
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It follows from the definition of Q that t,,, satisfies

1 A 00
t =o - + - Z rkt',k '

A 1 +A --0 ~
00 Aj. I '(

tl,n = "n Z k tl n" "-- , Z--I

1 A + M+

t, = + Z kt,,k + 4-1.0, = 2,...,
A+p.j A+ Ai =

ti:n + +kti,nti~n-- A+/ A /#.i-,zk=1

. .~ )+ tl(, - -)nAj4n + n ) ti,n- I + ;4 I ~+n  t4-1.,,I = 2,. .. n = 1 . . 5
A + ;h+. A-r

Consider the last expression, t,,,. The first term is the average time that the system spends

in state (i, n). The second term is the contribution to t.,n due to an arrival. The third and

fourth terms are the contributions due to a departure of a task belonging to J and a task

not belonging to J, respectively.

We are unable to obtain a closed form solution to equation (5). As there are a countably

infinite number of unknown variables ti,,,, i = 1,.. -; n = 0,-., it is impossible to obtain

exact numerical values for these quantities. Consequently, he remainder of this section is

concerned with developing upper and lower bounds on the conditional expectations ti,,.

These can be used to obtain upper and lower bounds for E[TIX = i = 1,.--. We treat

each in turn.
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The conditional expectations, ti,, satisfy

(1b) = - + . A (B (1) 0 1b)
1.o ), + > Z ,,,k + S: Qkti ,A+1 Ak=B+l

= 1 ~+ nj.s,+j/(n +r1 ~b

A ( A +, E ktl~+k + E= ak-i ,B n -

b) _ 1 + 0+

A ( Ck~B )k (1b) i= ,
A7pE iZckk + C' i, i

k=1 k=B+1

t(1b) = 1 + + 0 t2 -

sI F , it. n ',1: ,B

T + k=l k=B-n

n 4+/( + n) 1Ib) t.s.A/i + n) (1b)B ()

(tb)~ _ 2, - -. nZ,= (7)., - a~
/i~nA 4 n A +' ;4'+n kB-~

Last, ti,,, n > B is bounded from below by ,B i.e.,

t t'), i- ,..-;n=B +1,..-. (8)

Thus we have the following lower bound on E[TIX =f,

B-I (b)

E TIX=i] < r ,t , + P[N B_. ,lt , i=(9)
n-sO
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additional j < B tasks in the system. Now assume that k tasks arrive and that n - k > B.

In this case, the time during which there are B + 1 or more additional tasks in the modified

system is equal to the length of the busy period associated with a bulk arrival Mx /MlI

queue with rate Aic that is initiated by the arrival of n -r- k - B tasks. Consequently, we

can write the following set of equations describing the expected response time of a job

conditioned on the number of tasks at the time of arrival and the number of tasks in the

arriving job, t.i ,

t1,o A 1 A +'41' E,= at'k +, -- ak k~l,B , bkB
_k= 1 lB

(,b) 1A B-rL 00 ())+

n2+,- /(n + 1),+ ckb)  + +

' '#n~l ",n- 19 = ''

k= l k--B+l

¥-,:.0, i=.2...,
orkt + akrk tb + b+kB

t,+ " + i =

A A+ +A+n \( k=1 k=B-n+l

ntid,,/(i+n)(, ) +i+i+'/(i+n)(') 12, ... I ,,B. (11)
,+ ";4a+ n  +in - A + . A4+,, i- I~no 1--- nB

where bi is the average length of a busy period of an MX/M/1 queue with arrival rate A

and service rate ;, that is started by the arrival of i tasks. The value of bl, I I, is

([GH76)

bi 1 1+ -98 - x
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Last, t,.,, n > B can be bounded by t,. given by

t,) = t- b - n=+B ,--. (12)

These expressions can be substituted into the following relation to obtain an upper bound

on EITIX = if,

EITIX = ii < Z i  = x,..,
n0n

B
1, Ir,(t) + (1- P[N < BI)t(.,)

n=0

( B
+h1 E[N]l- B(1 -P[N< B1) - Ln~r, ,i=,.- (13)

3.2.3 Approximate analysis of TS-PS

Let T("b) and T(' } denote the r.v.'s defined in the preceding sections that bound T from

below and above. We use the following approximation for E[TIX = fl,

EIT(PPr"z)IX = i] = (EIT(")IX = '] + E[T(A)(X = S'1)/2. (14)

The accuracy of this approximation is high when the system load is low and/or when the

parameter B takes a large value. We explore both of these effects in Table 1. Here we

evaluate the upper and lower bounds on EIT] for a system of 16 processors that process

fork-join jobs containing exactly 16 tasks. The bounds are tabulated for different values of

the processor utilization, p = A/MA and for different values of B. We observe that sufficient

accuracy is possible for processor utilizations up to .9 provided B = 350. In this case, the

maximum error incurred by the approximation is 3.6% at p = .9 and less than .05% for

p < .8. We shall use B = 350 throughout our studies.
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p B=50 B=100 B=200 II B=350
lower upper lower upper if lower upper lower I upper i

•1 55.03 55.03 55.03 55.03 11 55.03 55.03 55.03 55.03
.2 1 56.68 56.41 5 56.68 56.68 if 56.68i 56.68 11 56.68 I 56.68 11
.3 11 59.21 59.41 59.32 59.32 11 59.32 59.32 II 59.32 59.32 11
.4 ii 62.95 63.91 1i 63.47 63.47 63.47 63.47 1 63.47 63.471
.5 68.18 71.78 70.02 70.16 1 70.10 1 70.!0 II 70.101 70.10
.6 75.17 87.01 80.60 81.70 81.17 1 81.17 11 81.17 81.17 11
.7 84.14 121.64 97.97 105.37 1 101.50 101.28 1I01.38 101.38

95.20 225.95 126.68 175.40 1 142.94 148.56 JJ 144.88 1 145.04 11
•.9 108.14 792.05 173.09 601.33 1 242.70 1 389.11 1i 271.46 1 291.96

Table 1: Approximation Analysis

4 Comparison of Scheduling Policies

In this section we compare the performance of TS-PS, JS-PS, and FCFS. Specifically, we

compare the mean job response time for different processor utilizations as we vary the

number of processors and the job size. We also compare the performance of TS-PS and

FCFS on a system that serves two classes of jobs: edit jobs and batch jobs. Edit jobs

are assumed to consist of a single task whereas batch jobs consist of many tasks. Last,

we consider the effects of partitioning the processors into two sets; one to serve edit jobs

exclusively and the other to serve batch jobs exclusively. For this last study, we compare

the performance of the partitioned system under TS-PS to one where the processors are

available to all jobs under TS-PS.

4.1 Comparison of TS-PS, JS-PS, and FCFS

In this section we compare the TS-PS, JS-PS, and FCFS policies as.a function of the

processor utilization. In Figure 5 we plot the ratio of response times of TS-PS to JS-PS,

and TS-PS to FCFS for two workloads as a function of the processor utilization, p. The

workloads consist of jubs with a constant number of tasks that is equal to the number of

processors, i.e., X = 8,c = 8 and X = 16,c = 16. The average task service time is taken

to be I/c. From tis figure we observe that FCFS provides uniformly better response over

-100-



the two PS policies for all processor utilizations. Furthermore, TS-PS gives lower response

times than JS-PS for all processor utilizations less than 0.9. This is due to the fact that

TS-PS takes advantage of the parallelism inherent in the fork-join job. We shall observe,

however, TSPS is not always better than JSPS for very high utilizations in Section 4.2.

The better performance exhibited by FCFS is due to the fact that TS-PS penalizes larger

jobs, while no such penalty exists for FCFS (a more detailed discussion of this penalty

phenomenon is given in the next section).

We also tested a workload consisting of two classes of jobs: edit jobs and batch jobs. Edit

jobs consist of a single task and batch jobs consist of 16 tasks. Let f denote the fraction of

jobs that are edit jobs. We considered three mixes, f = .5, .95, .99 operating on a system

containing c = 16 processors. Figure 6 illustrates ratios of the mean job response time of

TS-PS to FCFS as a function of the processor utilization p. We observe that the FCFS

policy exhibits the best performance everywhere except when the utilization is high and

the fraction of edit jobs is high (f = .95, .99). In this region TS-PS provides slightly lower

response times.

This workload, (f = .95, .99), was chosen so as to increase the variability in the service job

service times in an attempt to illustrate a setting in which TS-PS outperforms FCFS. It is

surprising that the difference is so small. This is an indication that FCFS is a more robust

policy on multiprocessors that execute parallel programs than it is in a system where jobs

are executed serially.

From this figure we can also observe that TS-PS provides only slightly better service to edit

jobs than FCFS, but significantly worse service to batch jobs.

4.2 Dependence on Number of Servers

In the last section we observed that TS-PS provides better performance than JS-PS for all

of the examples. This appears to be at odds with observations that we noted in an earlier

study [RTS87] on the performance of TS-PS and JS-PS in a single processor system. In a

single processor system, JS-PS was shown to be uniformly better than TS-PS. This is due
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to the fact that in such a system there is no possibility for parallelism and the following

occurs. Assume that there are 2 jobs, one with I task and one with 9 tasks. Then TS-PS

gives the job with 9 tasks, 9/10 of the processor, and the job with a single task only 1/10

of the processor. However, JS-PS would give each job 1/2 of the processor. So on a single

processor, TS-PS penalizes jobs with a small number of tasks. In a multiprocessor, there

exists sufficient possibilities for parallelism so that this anomaly found in a single processor

for TS-PS does not exist.

To study the effect of parallelism, we consider a workload of jobs consisting of 16 tasks and

study the performance of TS-PS and JS-PS on systems with c = 1, 2, 4, 8. 16, 32 processors

as a function of processor utilization. Figure 7 illustrates the results of this study plotting

the response time ratios of TS-PS to JS-Pc'. We observe that TS-PS is always better than

JS-PS in multiple processor systems when processor utilization is low. However, when the

number of processors is small (< 8), there exists a utilization value, say po such that system

performance is better under JS-PS when p > P0. This threshold is an increasing function

of e the number of processors. This results because as the number of processors increases,

the capability of sustaining parallel program execution under TS-PS increases.

4.3 Processor Partitioning

We now study the effect of dedicating a potion of the multiprocessor to each of the batch

and edit classes. For edit jobs we assume that the computation time is small and equivalent
to one task unit. Batch jobs are assumed to be large, consisting of fork-join tasks. The

individual tasks from either class are assumed to have the same service requirements.

In order to examine the effect of statically dedicating a portion of the multiprocessor to each

class, we compare the performance of a system composed of 16 servers .where each server

can run either class of job, to a partitioned system where some fraction of the processors
are dedicated to each class. The combined system is composed of c = 16 servers. The

partitioned system is composed of c = 16 servers such that K servers are dedicated to edit

jobs and c - K servers are dedicated to batch jobs. Our performance metric is the ratio of

the response time of the partitioned system to that of the combined system.
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In this experiment the independent parameter is the combined system utilization. Our first

experiment consists of an arrival of 50 percent edit jobs and 50 percent batch jobs. Note

that this arrival pattern results in the total computation time of edit jobs to be 1/16 of

batch jobs. The partitioned system is defined by K and the equivalent flow of jobs. We

plot our results in (Figure 8).

We can observe several interesting phenomena from Figure 8. First, by dedicating only one

server to the edit jobs, K = 1, both edit and batch jobs degrade. Thus, a poor partitioning

choice negatively effects both classes of jobs. Second, improvements can be made in the edit

jobs by allocating enough additional servers, K = 2, 3, to handle the computational load of

edit jobs, but this is done at the expense of the batch jobs. This phenomena is especially

striking at high utilizations.

As the relative arrival rate between edit and batch jobs increases, as show in (Figure 9) where

the proportion of edit jobs is 95 percent, we see that more servers must be dedicated to edit

jobs before the mean response time is decreased. Note that in this case the total computation

time required by edit jobs is greater than needed by batch jobs. The result is that 9 of the

16 processors are required to reduce the edit job response times (see (Figure 9)). There are

regions in the figure in which the performance of both jobs classes decrease, however, we

observe no region in which both classes improve performance. This phenomena has also

been reported in [NTT87] for FCFS scheduling.

Figure 10 reports the results when batch jobs are composed of 4 tasks and the workload

contains 50% batch and 50% edit jobs. The results in this figure are similar to the 95%

edit jobs and 5% batch job tests shown in the previous figure. The reason for this is that

when batch jobs are fairly small, z = 4, and there are 50% edit jobs and 50% batch jobs in

the workload, then the total computational requirements of edit jobs is high (as in the 95%

test) for a given utilization. Therefore, edit jobs will saturate a small number of processors.

Notice that only when the number of processors dedicated to editing reaches 4, does editing

perform well.
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5 Summary

We have anayzed fork-join programs as a MX/M/c queueing system. We have obtained

am expression for the mean response time of a fork-join task under processor-sharing. Since

our expression is not in closed form, but given as a set of recurrent equations, we have

obtained expressions for both lower and upper bounds. Our bounds become tight as the

number of states increase.

We have compared three scheduling approaches: TS-PS, JS-PS and FCFS. We have ob-

served that in general FCFS out performs both TS-PS and JS-PS. Likewise, we have ob-

served that TS-PS performs better than JS-PS unless that number of servers is small com-

pared to the number of tasks.

We have considered the interesting problem of partitioning the system into two subsystems.

Each subsystem is dedicated to one of two job classes: edit jobs and batch jobs. We

determined several interesting results. When half the jobs are edit jobs and one server is

dedicated for edit jobs exclusively, both classes experience an increase in response time.

Improvements in edit jobs always cause a reduction in the performance of batch jobs in

the partitioned system. This suggests that a parallel system should have a controllable

boundary for processor partitioning.
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In this paper we study the class of acyclic fork-join queueing networks, in short "AFJQN's", that
arise in the performance analysis of parallel processing applications and flexible manufacturing
systems. We obtain the stability conditions and develop upper and lower bounds on the performance
of this class of networks under very general workload assumptions.

AFJQN's arise very naturally in parallel processing applications. Many parallel programs are
decomposed into tasks, each of which can execute on a separate processor. The division of the
parallel program into tasks can be described by a directed graph where the nodes correspond to
tasks and the directed edges represent the precedence relations between the tasks. In many cases,
the underlying graph is acyclic and the program is implemented with the use of fork and join
constructs. Briefly, a fork exists at each point in a parallel program that one or more tasks can
be initiated simultaneously. A join occurs whenever a task is allowed to begin execution following
the completion of one or more other tasks. Forks and joins reflect themselves in the underlying
computation graph in the following manner. A task that has one or more outgoing edges corresponds
to a fork. A task with one or more incoming edges corresponds to a join. These are exemplified by
the parbegin and parend constructs that are available in parallel programming languages such
as Concurrent Pascal [Br 75], Concurrent Sequential Processes (CSP)[Ho 78], and Ada [Py 81].

Consider a multiple processor system where each task in a specific program is mapped onto
a separate processor. The execution of a single program request can be described as follows: (i)
Upon completion of a marked task, tokens associated with the program are routed to each processor
handling the tasks that follow the marked task in the underlying computation graph; (ii) Once a
processor has received tokens from all tasks that precede a marked task in the computation graph,
this processor is allowed to execute it. Let this system be required to service a stream of requests
corresponding to different instances of that program and assume each processor executes its tasks
in the order defined by the program arrival dates. We have described, in brief, an AFJQN. Figure
la illustrates a hypothetical parallel program using forks and joins and Figure lb illustrates the
associated fork-join queueing network.

AFJQN's also arise naturally in the context of flexible manufacturing systems. In production
lines, objects are built by assembling multiple parts together. The successive assembly steps are
described by an acyclic graph where the nodes correspond to assembly operations and the edges to
precedence constraints between these operations. Here, a join occurs whenever all the parts to be
produced by the operations that precede a marked operation have to be available in order to begin
assembling. A fork occurs at points where several assembly operations are initiated simultaneously
( for instance at points where the production of some part is followed in the underlying graph by
several assembly operations to be done on this same part ). Assume each assembly operation is
allocated to a specific machine. We have another instance of AFJQN when identifying assembly
machines with the servers of the queueing network and the parts with its customers.

Apart from the subclass of Jackson series networks, the type of queueing networks we consider
here remain basically unsolved. It can be shown that the "synchronisations' induced by the forks
and the joins destroy all nice properties like insensitivity or product form, so that every problem
becomes computationally hard. Initially, most attention focussed on fork-join networks consisting
of B queues in parallel. In this case, exact solutions have been provided for B = 2 in [FH 84] and
[Ba 85]. Approximate solutions and bounds have been provided for arbitrary values of B in IBM
85], [NT 851, [TY 86] and [BMS 87]. Conditions for stability have been presented for arbitrary
values of B in IBM 85] and [Si 87]. Last, models have been developed for programs exhibiting
parallel fork-join structures that are executed on multiple processors serving a single queue in
[KW 85] and [NTT 87]. Series-parallel Fork Join queueing networks have been introduced in [BM
85], where stability condition and bounds were derived.

Several classes of stochastic ordering principles have been considered in the queueing literature
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( see [St 841 for a comprehensive treatment of the issue ). It was shown for instance, that an
increased input ( resp. decreased output ) intensity leads to higher ( resp. reduced ) moments
of the waiting or response times for wide classes of queueing systems ( see [Wh 811 ). Another
type of ordering comes from the idea that an increased variability of either the input or the service
statistics should also lead to higher waiting or response times. This has been discussed by several
authors in the context of isolated queues ( see [St 841, [Ha 841, [Wh 841,[BM 85b ). The latter
ordering principle was used in IBM 851 ( resp. IBM 85b) ) to compare the moments of the delays
experienced by customers traversing parallel ( resp. series-parallel ) fork-join queueing networks to
the related moments of product form networks. Both upper and lower bounds were derived using
this principle.

A third type of ordering arises when a set of random variables (RV's) are associated. In this
case the statistics of the maximum over these RV's are bounded by the maximum of the marginats
of these RV's. This approach was used in [NT 85] and IBMS 871 to develop upper bounds on the
moments of the delays experienced by customers traversing a paralel fork-join network.

The aim of this paper is to extend the scope of these ordering and bounding techniques to
the class of arbitrary AFJQN's which are rigorously defined in Section 2. The equations governing
the behavior of these networks are provided in Section 3. This section also contains necessary and
sufficient conditions for the stability of these networks under fairly general statistical assumptions.
This stability result is based on an extension of Loynes' method [Lo 62] to this class of queueing
networks. Bounds based on convex ordering are described in Section 4. Although these arguments
yield upper and lower bounds on the moments of customer delays, tighter upper bounds are obtained
in Section 5 using stochastic ordering properties of associated RV's. Sections 6 and 7 are devoted
to the derivation of bounds of practical interest based on convex ordering and associated RV's
respectively. All these bounds exhibit the same stability condition as the initial queueing system.

2 Notation and defixiltions

We are concerned with the delays that customers experience when they traverse an Acyclic
Fork-Join Queueing Network 6. Here 6 is represented by an scyclic graph C = (V, E) where V is
a set of B FIFO queues labeled i = 1,...,B and E is a set of links such that (i,j) c E implies J > I
(such an ordering is always possible in an acyclic graph).

Define the set of immediate predecessors of queue i, p(i), to be the set of queues that have a
direct link to queue i

p(i)={ "(l,B) I (ji) E} (2.1)

and the set of immediate successors of queue i, s(i), to be the set of queues to which i has a direct
link

,(P)= (i (1, B) I (s,j) e E }. (2.2)

Define the set of predecessors of queue i, x(i), to be the set of queues that have a (possibly)
indirect link to queue i :

r(5) = {U) P(a)LUP,(s) UJP 1 ( (2.3)

where p(X) denotes the set of immediate predecessors of the queue of X, a subset of (I,..., B) and

p" (X) denotes p(p(..p(X))..)).
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We also denote as s(O) the set of queues with no incoming links and as p(B + 1) the set of
queues with no outgoing link. It will be assumed that the numbering of queues is such that

s() (,...,Bo), Bo < B (2.4)

and

p(B + 1) = (B,,..., B), B, :5 B. (2.5)

Observe that p(i) = 0 "if ie s(O) and s(i) = 0 if i c p(B + 1).

We associate with queue j, 1 j < B, a sequence {aj}- , where a c R + represents the
service requirement of the n-th customer to enter this queue. Queue j behaves as a single server
FIFO queue so that an arrival pattern {a )-' to this queue together with the sequence {a'}' fully
determine the sequence of service completion dates ( using the Lindley-Loynes equations ).
Definition 0

An acyclic queuing network, as defined above, is an it Acyclic Fork-Join Queueing Network if it
obeys the following rules:

(i) There is a single ezogeneous arrival stream with pattern ao = 0 < a < .. < an <
..cR + . The n-th customer arrival to queue i, 1 :5 i < B0 , coincides with the n-th
date of this ezogeneous stream. A stated above, this fully determines the sequence of
service completion in the queues I < j 5 Bo.

(ii) A service completion in queue i does not systematically trigger an arrival to a queue of
s(i). The arrivals to queue j, j > B0 , are precisely generated as follows: assume the
sequence of service completions is known for all queues 1 < i < j, where Bo < j :5 B.
The n-th customer arrival to queue j, a, coincides with the latest of the n-th service
completions in the queues of p(j). Due to the acyclic structure of V, this successively
defines the arrival patterns in queue B0 + 1, B0 + 2,..., B.

(iii) There is a single output stream out of this network. Its n-th event coincides with the
latest of the n-th service completion. in the queues B 1 , Bi 1,..., B.

As it will be seen in the next section, these three rules fully determine the evolution of the queueing
network.

Some of the bounds dicussed in the application sections 6 and 7 will only apply to certain
subclasses of AFJQN's, namely parallel and series networks. An AFJQN 6 is said to be a parallel
one with K > 2 subnetworks with respective underlying graphs Gh = (Vk, E4), 1 < k < K, if its
graph G is decomposable into the K disconnected subgraphs G,, ... ,GK. An AFJQN 6 is said to
be a series one with K > 2 subnetworks with respective underlying graphs G& = (V), E#), 1 <
k < K, if its graph G is connected and exhibits the following property: There are K - 1 vertices
1 < ii < i2... < iK-1 < B such that there are no dirbct links between the vertices of (1,..,: - 1)
and those of (ik + 1, ..B) for all 1 :< k < K - 1. The graph G, is the defined as the restriction of
G to the vertices (i4-I + 1,..,ib,), where i0 = 0 and iK = B. Figure 2 illustrates a parallel AFJQN
and a series AFJQN.

3 Evolution equations and steady state

For n > 0 and 1 < i < B, let a' e R+ be the service requirement of the n-th customer to
be served in queue t ( there is hence a zero-th customer !) and r. be the n-th interarrival of the
exogeneous stream : rn = a,+, - a_, n > 0. Similarly, let d'n e R+ be the delay between the
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n-th exogeneous arrival date and the beginning of the n-th service in queue i and R, be the n-Lh
network response time defined as the delay between the n-th exogeneous arrival and the n-th datf.
of the global departure process.

Lemma 1
Assume the network is empty at time 0. Then, for n > 0,

d),, =-,maz(max(dcr,, + o,, ),,, + a' - r,) (3.1)S(P(j) n rs n

where the maximum over an empty set is zero by convention and

d- -= max (d. +o ). (3-2)

a ep(2)

The n-th network response time, R,, is given by

R,, = max (d + a,). (3.3)
mlp(B +1)

Proof
The boundary condition (3.2) follows from the assumption on the initial condition and from rules
(i) and (ii) that define AFJQN's. For j such that 1 _ j :_ Bo, the inputs in queue j coincide with
the exogeneous arrivals and d) is thus the n-th waiting time in a FIFO queues with interarrival
sequence {r,,}' and service requirements {o })*. We have hence the classical Lindley-Loynes
equations

dj .+ maz(0, d' + aj. - r,,), n > 0, 1 < j < B0, (3.4)

which is exactly equation (3.1) since p(j) = 0.

Let j be such that p(j) # 0, and assume that (d,} is known for all i c p(,) so that the n-th
service completion in queue i e p(j) takes place at d + ,. According to rule (ii), the n + 1-st
arrival to queue j takes place at

a,+I + maxd ( + + 1) (3.5)

Since the server of queue j becomes available for serving the n + 1-st customer at time

a, + dnl + o , (3.6)

it follows that dj+, is equal to the expression in the r.hs of equation (3.1). Equations (3.1) and
(3.2) are the basic evolution equations of the network, from which the transient bounds of section
4 and 5 will be derived.

The remainder of this section is devoted to the construction of the stationary regime of such
networks. This construction will be essential in the continuation of the transient bounds to steady
state bounds. Consider the following set of assumptions.

Ho The sequence {r,,,u , I < j < B0})1. on (R+)B+' forms a stationary and ergodic
sequence of integrable RV's on the probability space (01, F, P).
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Theorem 2

Let j be fixed I < j !S B. Assume 1 o holds and that for alla s p(), dI converges weakly to a finite
and integrable RV d; when n goes to oo. Assume in addition that

Elao < Elr,4 VI f (j). (3.7)

Then the distribution functions of the RV's dI converge weakly to a finite RV dI when n goes to
oo. More precisely, under these conditions, there exists a sequence of RV's 6, n > 0 on (,, F, P)
such that 6,3 and dl are equivalent in law for all n > 0 ( d3 =., 63 ) and 61 increases pathunise to
a finite limit P, when n goes to oo.

The proof is presented in Appendix 1.

4 Bounds based on convex ordering

We are now in position to prove the stochastic ordering result. Consider a network 0 in C
and assume that all the RV's {a,,)' and {al}', 1 < j < B are defined on the probability space
(fl, F, P) and are all integrable.

Let now {&.}* and 1 < j < B, be a set of "smoother" arrival and service processes
on (fl, F, P) in the sense that there exists a sub a-algebra say G of F such that for all n > 0,

.= a+, - a. = EIr.IGI as. (4.1)

and for all j in B,

e k=Ela-'IGI a.s.(4)

These new variables are smoother than the original ones in the following sense let b and b be
two non-negative and integrable RV's on (fl, F, P) such that

b = EIblGI a.s. (4.3)

Owing to Jensen's theorem for conditional expectations, (4.3) entails

f(b) = f(E[bIGI) < Elf (bIG)), a.s. (4.4)

for all convex nondecreasing function f: R+ -* R+ such that the expctations exist. This in turn
entails that for all such f

Elf(b)] < Elf(b)] (4.5)

which can be rephrased in terms of the convex increasing stochastic ordering of Stoyan [St 84] as
follows:

i<c, b. (4.6)

Observe that b and b have hence the same first moment and higher moments are always larger for
b than for b.
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Let d) be the delay variable obtained with the new arrival and service pattern { {Q?-}
= 1, B. The main result of this section is the following theorem

Theorem 3

For all n > 0 and 1 < j < B,

d" is integrable and d' _ E[dJGJ a.s. 7

Proof

Basis step

Consider the case n = 0 we shall show that (4.7) holds for all j = 1, B by induction on j

Basis step

Consider all j such that p(j) = 0, equation (3.2) shows that

dj = d) = 0, (4 S)

so that (4.7) holds.

Inductive step

Assume that the hypothesis is true for aU t,1 I_ i < j where Bo _ ' _ B IL
is plain from (3.2) that d6 is then integrable. Applying Jensen's inequality for
conditional expectations to (3.2) yields

E[d;G] > max (Ell04GI + &1), (4 9)

so that if the predecessors of j satisfy property (4.7), so does queue . since (4.9)
implies then

Ejd!jjG) > max(d + &o). (410)
Stp(j)

This completes the proof of the basis step.

Inductive step Assume now that the property (4.7) was established for all queues up to rank n
We now show that the property holds also for n + 1. This is done by induction on 1 _j < B

Basis step

Consider all j such that p(j) = 6. (3.1)

d,,+, =, (d'., + ,. - r,, ), (4 11

so that dl,+ is also integrable. Jensen's inequality together with (4.1) and (4 2
imply that

Eld',+,ICI ? rna=(E[d.,IG + , - ,o) (4 12'

Hence, since (4.7) is satisfied for rank n, we get from (4.12) that

E~d",fC, _ ma(d, + & ,,, ) = ,+ ,a,., 1 < i _ Bo, (, I7.
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so that the property is also true for rank nz + 1.
Inductive step

Assume (4.7) holds for all i, I < i < j, where BO < J B we now show that the
property holds for J. It follows from (3.1) that d1 i1s also integrable. Applyin~g
Jensen's inequality to (3.1) and using (4.1) and (4.2), we get

Ejd'.+1 jG1 :: maz(max(ElI,+I IG) + + 1), Eld IG) + &1, (4.14)

Using now the ordering property for rank'n, we get

Eld~n+ 1fGJ ! maz(max(Eld, +,G] + "a ,d' + &' - i,.) a.s. (4.15)

Since the property is satisfied for the predecessors of jwe get that it is then
satisfied by queue j too since (4.15) entails that

This complete the induction step on j.
This completes the induction step on n and proves the lemma.

Rem:ark
Observe that theorem 3 also holds under the weaker assumptions.

Fn EfrjGj, n > 0 (4.17)

and

<E(uaJCJG, n > 0, j 1, B. (4.18)

Corollary 4
For all n > 0 and 1 = 1, B.

d' >, d,. (4.19)

Proof

Due to Jensen's inequality

Elf (dn)jGj f (Eld'jGJ), (4.20)

so that using equation (4.7) and the increasingness off
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Equation (4.19) follows now directely from (4.21).

The next corollary shows that if the network achieves steady state in the sense of Theorem '.

the transient bounds of corollary 4 extend to steady state.

Corollary 5

Assume that both { or,o'j = I,B)}* and {F,,, = 1,B}' satisfy the condition Ho and that d)

and dl converge weakly to finite RV'a dl avid d, respectively. Then

iJ" :S c d'0. (4.22-)

Proof

Assume f(51) is integrable. Since 6' <_ 61 , and d3 --, 6, d) . &I, it is then easy to prove

that f(d)) and f(d,) are both integrable for all n > 0 so that corollary 4 entails

Elf(61)] = Elf (d')I < Elf(dl)] = Elf (E) . (4.23)

Letting n go to infinity in the inequality

EIf(6.)] _< Elf (5.)] (4.24)

yields the desired result using the bounded convergence theorem.

Remark 1

Consider a two queue series network and denote s W), n > 0, = 1, 2 the waiting time of the
n-th customer to enter queuej. We have the following inductions for the RV's W,' initialized by
the condition W = 0 :

n = ma(w, + al + a,, - a,,+1 ,0), n > 0 (4.25)

and
w+1 = max(W.' +o, +d. - d4+1,0), n> 0, (4.26)

where the RV's {d.)' are the departure epochs from queue 1

d,,+ - d,, = a+ + x - a - an' - W'. 0).(4.27)

Observe that due to the decreasingnes of the r.h.s of (4.27), considered as a function of W,
we cannot derive from this any simple comparison result between (d,+, - d.) and (d,+, - d,)
when using Jensen's inequality as before.

We prove in Appendix 2 that there is actually no such general ordering result by considering
two simple stationary queueing systems where an increased variability of the sequence (r,,, a') has
the following respective effects :

-It increases the variability of the interdeparture distribution for the first one,
-It decreases it for the second one.

This strongly suggests that the stochastic ordering result of this section, which apply to the

total delays d', does not extend to the individual waiting times W.

5 Bounds based on assor'ation

-121-



5.1 Association of the delays

Before entering the core of this section, we introduce some terminology that will be useful in

the forthcoming analysis and review the properties of stochastic ordering and associated RV's that

will be useful to us.

Definition 6 ([BP 751)

Real valued RV's a,...,a,, are said to be associated if
cov[h(a,,...,a,) , g(aj,...,a, )] ___ 0(S .)

for all pairs of increasing functions h, g : R ' -. R. Association of RV's entails the following

properties :

1. Any subset of associated RV's are associated,

2. Increasing functions of associated RV's are associated,

3. Independent RV's are associated,

4. If two sets of associated RV's are independent of one another, then their union forms a set of

associated RV'* ,

5. If a1 ,...,a, are associated RV's, then

P[,max a < t] _ "i Pia, _5 t]. (5.1.2)
_ io,=1=X,

We are now in position to derive the main results. Network 0, (r,} and {o),} 1,B

are defined as in section 2. The following assumptions will be made throughout the section

H, {r,}' is independent of {{u } }, 1 < j < B,

{r,},O is a set of independent RV's and

{{ua, I < j < B} ), is a set of independent RV's.

Lemma 7

Assume H, holds. For all m > 0, {di, 1 < j < B, 0 < n < m} is a set of associated RV's .

Proof

We shall actually prove the more general result that {d3, 1 < j < B, 0 < n < m - 1} U{-rs, n <
0} J{a-, n> 0, 1 < j B) is a set of associated RV'sfor 1 < k< B, m > O. Thisisdone by
induction on m.

Basis step

Consider the case m = 1. We shall show that {d', _ j1 k}U{-r., n > 0}U(cr, n > 0, 1 <
j < B} is a set of associated RV'e for all I < k < B by induction on k.

Basis step

Consider all j such that p(j) = 0. dj can be expressed as

X3 = 0. (5.13)

Consequently, {dj), 1 < j _ Bo is a set of independent RV's which along with

{-r.,n > 0}U{o), n > 0, 1 < j < B} form a set of associated RV's according to
property 4.
Inductive step
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Assume that the hypothesis is true for all I', I < i < k where BO 5 k < D. We nov.
show that it is also true for k. Note that p(k) ? 0. By definition,

do = max (df + or) (5.1-)0 Sp(k)

which is an increasing function of associated RV's (note that i < k if 1 * p(k)).

Therefore it follows that {d', I <j < k}U{-r,,, n > 0}U(a), n > 0, 1 < j< B}
is a set of associated RV's.

This completes the proof of the basis step.

Inductive step

Assume that the hypothesis is true up to m. We now show that the hypothesis holds also for m - 1.
This is done by showing that the RV's {d), 1 < j < k, 0 < n m} U{-r, h > 0} U(ar, n >

0, 1 < j < B) are associated for all 1 < k < B by induction on k.

Basis step

We first show that {di, 0 < n < m, I <j< B}U{-r,,, n >0)U{a, n >0, 1 <

j < B}U .{d.+ 1 , 1 < j < Bo) is a set of associated RV's. By hypothesis we already
knowthat {dJ, 1 < n<m, I<j<__SB}U{-rn, n>0}U(a', n >O, 1 <j_ 5B} is
a set of associated RV's . Now, for 1 <j < B0 .

d'+ 1 = maz(d" + al - r,, 0) (5.1.5)

is an increasing function of associated RV's which proves the result.

Inductive step

Assume {d, 1 < n < m, I < j _ B}U{-r., n > o}U{o', n > 0, 1 < <_
B) U{d)"+, I < j <5 k) is a set of &swociated RV's for Bo :5 i < k where BO :5 k < B.

We now show that the hypothesis holds for k. The expression for d'+ 1 is

d +I =max( max (d!, + + L 1 ),dn + ., - r.) (5.1.6)tcp(k)

which is an increasing function of associated RV's , hence the result.

This complete the induction step on k and the hypothesis is true for k = B.

This completes the induction step on m and proves the lemma.

Remark

Lemma 7 holds under the weake assumptions

H'1 (r,)' i independent of {(aj)"}, 1 < j B,

{r7}' is a set of associated RV's and

{{, 1 j <B)'), is a aet of associated RV's.

5.2 Bounds based on stochastic ordering

This section will mainly deal with distribution functions rather than with RV's.

Definition 8
Let F and C be two distributions functions on R. F is said to stochastically dominate C, F >.j G,

iff
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< G(), Ve R. (5.2.1)

If a and b are two real valued RV's , we shall say that a >.t b whenever

P[a < xi ! Plb < x), Vzc R. (5.2.2)

A consequence of the above definition and property 5 of associated RV's is

Lemma 9

Let (a1, ..., a,,) be a set of associated real valued RV's with respective distribution function Fi,..., F,.
Let F be the distribution function of maz(al, ...,a,). Then

n

F <.,t 1" F,. (5.2.3)

Last, we state the following obvious lemma.

Lemma 10

Let (F,,..., F,,) and (G ,...,G,) be two families of distribution functions on R. If F, >,t G, =

1,n, then

nI n

Fl. = F F, ., 1- i = Gj.G2 ... G (5.2.4)
i~l /=1

and

F1 * F2 * .. * F,, :t G* G2 .. *G,, (5.2.5)

where . and * respectively denote the product and the convolution of distribution functions.

In the sequel, network # is given as in the preceding sections. We denote as E2 ( resp. T,,-

the distribution functions on R of the RV on (resp. - r.). Notice that E3' has it support on R +

and T; on R-.

We define a sequence D-, n > 0, 1 < j < B of distribution function on R by the following
recursion

D= o (b, *.E), j = BB (5.2.6)

and

D,+ i ( "D" .+)' * T,*r)" (5.27)

In these definitions, the product over an empty set is always understood as the step distribution
function U defined by

U(t) = 0, t < 0, U(t) = 1, t > 0 (S.2.8).
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It can be checked by induction that the RV's D), have their support on R'

Theorem 11

Assume H, is satisfied. Let D2 be the distribution function of the RV's dy, n > 0, 1 < j ' B. We

have then

Ao,<.t,b',,n >o0, 1, i=,B. '~ .

Proof

The proof is by induction on n. Here df(a) denotes the distribution function of the RVa.

Basis step n = 0. This step is shown by induction onj.

Basis step

Consider queue j where p(j) = 0. D =D = U, so that the result holds true.

Inductive step

Assume the theorem is true for B0 _< j < B. We now show that it is true for j - 1.
Note that p(j) 6 0. We have

' = I fl. , I' (D'E E) (5...0)
00 0 0i * Q 0t

"p~i~l) p() + 1)

(by induction hypothesis and lemma 10)

>.t df ( max 0 + a;)icp(.) + 1)

(by lemma 7 and lemma 9 plus assumption H, which entails that &a and a; are
independent RV's).

(by definition).

This proves the basis step for n.

Inductive step
Assume that the theorem is true for n. We now show that it is true for n + 1 by induction onj.

Basis step

We first it for " c V such that p(y) = 0

bj+ s = -(.(I, El. * T.-) ':?. U.(D' * El * T.-) 5.1I

(induction assumption)

df(mo (d-. + ej - r., 0))

(by assumption H, which entails that d' is independent of ua. - r,,)

= D1+25
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This completes the basis step.

Induction step

We now assume the theorem is true for B0 < : < B and prove it for j I.We have
bJ'=( ,+, E * E) +' -

n+ (n n(D+ •.+))(11 • T') (5.2.12)

>.t ( i (D.+, • +1)).(Di + J+ 7'

sepj+1)

(inductive hypothesis and lemma 10).

>. df(max( m . ' I 1 + ' -
ma (,+ ) v n +  

a. 1 n))-f

(where we used that +l is independent of o+z and dn+lof a+l - r, due to H1 ,

then that (.+I +a+1) and (dj+l +o1 + _ r,) form a set of associated RV's due to

lemma 7 and finally lemma 9)

n+1

(by definition).

This concludes the proof of the inductive step, and the proof of the theorem.

The next result concerns the extension of the transient bounds of theorem 12 to steady state.

H 2 will denote the following set of assumptions:

H2 Assumption H 1 ,

The sequence {r.)}O ie i.i.d. with r. integrable,

The sequence { ije- is i.i.d. with o! integrable for all j = 1, B.

Theorem 12

Let j be fized 1 :5 j < B. Assume H2 holds and that for all i e p(j), D converges weakly to a
finite and integrable distribution function D when n goes to oo. Assume in addition that

E[a,,.1 < E[,'l. (5.2.13)

Then the distribution functions b converge weakly to a finite distribution function by when n

goes to oo. Denote as D7 the distribution function of d2. Under the foregoing assumptions, the
distribution functions DI converge weakly to a finite ditribution function DJ when n goes to oo

and D stochastically dominates D) , namely

D) <St D). (5.2.13)

The proof is found in Appendix 3.

6 Applications of bounds based on convex ordering

The following set of assumptions will be assumed to hold throughout the section:
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H3 . The J + 1 sequences f .)0 (a,', j ,., are mutually 'ndependent

6.1 Determinism minimizes response times

The property that under certain independence assumptions, deterministic interarrival times
resp. service times ) minimize response times in G/G/I queues, as shown in [St 84) and Wh 84
can be extended to AFJQN's using Theorem 3.

Let {d } ( resp. {Jl}.' ), j = 1,..,B be the response kimes obtained for the constituting
sequences ({}o and {aJ} o  j = 1, B ( resp. {(f},- and {1,) o , j = ,..,B ) respectively
defined by the equations:

r = E[r,], n 0 (6

a' o =I,.,, n>o 0612

and

f=n , ,n>0 (6.1.3)

= , j=I,..,B, j 4o, ,n>o (6.1.4)

n= E[u {, .>0 (61.5)

where "o is any fixed integer I S jo < B.

Corollary 13

For all n > 0 and y = 1,.., B, the following inequalities hold

dr' <5,i dn ,n > 0 (6.1.6)

and
d,, d' ,. n,. > 0 (6.1.7)

Proof

Let G (resp. () be the sub a-fields of F generated by the RV's {cnj}", j 1,.., B resp. { 0}*
and {a'},j = , .. , Bj $ jo ). We first get from the independence assumption that

,,= E[r,Ijl, n > 0 (61.8)

= EIr.,I1, n > 0 (6.1.9)

and

&= E,,,II, n >0 = ,..,B, (6.1.10)

so that Theorem 3 entails

d) < Eldjd], n > 0 =1,.., B (6.1. 12)

and
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d, < 5Ejd'jlG,, n> o j = ,..,B. (6. 1 13)

Equations (6.1.6) and (6.1.7) are mere rephrasing of (6.1.12) and (6.1.13) respectively.

The lower bounds (6.1.12) and (6.1.13) on dj extend to steady state when the constituting

sequences {rr,,)O and {a}0, j 1 ,..,B satisfy the assumptions of Theorem 2. Indeed, these

conditions entail that both the constituting sequences 00,0", P O, 1,..,B and and

0 j = 1,.., B satisfy the assumptions of Theorem 2. Hence Corollary 5 applies to show that

the bounds of Corollary 13 extend to steady state, namely

J <c% dl' , j = 19_1,B, (6.1.14)

d-__ C_, d o, j = i, .., B. (..s

6.2 Networks in random environment

The problem of determining the statistics of isolated queues with time varying interarrival
times was considered in the markovian case in [Ma 85]. For the general G/G/1 FIFO queue,
bounds are also available when the variations depend upon an independent stationary and ergodic
"environment" process. It was shown in [BM 86] that the waiting time statistics in such a queueing

system are bounded from below by those of the same queue with the environment process kept to
its mean value (see also [Ro 83]). Theorem 3 allows to extend this result to any AFJQN 0. As in

[BM 861, the environment process is assumed to be a non-negative real-valued stochastic process
Vt, c R on (fl, F,P) being ergodic and stationary. Two stationary and ergodic sequences of

nonnegative RV's are assumed to be given: {r,}-" and {ua} ", j = 1,.., B. All these RV's are
assumed to be integrable with E[V(t)] = I holding in particular. The modulation of the arrival
process is obtained by accelerating time proportionally to V, so that the effective interarrival times
in the random environment network are given by the sequence { } defined by

. V (a) > o (6.2.1)

Let {djn}0 ( resp. {d'j ) be the response times obtained for the constituting sequences

{Y,} ' ( resp. {r,)-' ) and {u } , j I,..,B.

Corollary 14

If the stochastic process V(t),t e R ie independent of (r,,}" and {oa}', j-= 1,..,B, then the

follounng inequality holds for all n > 0 and j = 1,.., B

d- _,',:. d ' . (6.2.2)

Proof

Let d be the sub a-fields of F generated by the RV's {ao} , j = 1,.., B and (rn)}'. It was shown
in [BM 86] that under the enforced assumptions, for all n > 0

E[f.I1] = r,. (6.2.3)

Equation (6.2.2) is now obtained as a direct consequence of Theorem 3.
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Consider a fixed queue j. Observe that under the foregoing assumptions, if {. and
= I,.., B satisfy the conditions of Theorem 2 for ', then, (r,}' and (a))-,] 1,., L

also satisfy the conditions of Theorem 2 for j, so that the bounds of Corollary 14 then extend to
steady state, namely

d >d_,,,. (62.4)

6.3 Bounds on parallel networks

Theorem 3 also provides lower and upper bounds for the following problem, a particular case
of which was considered in IBM 851. Let f be any AFJQN made of K AFJQ subnetworks cf ,..,QK

in parallel with resoective underlying graphs Gj = (V, Et), I < I < K. Denote as R,, the n-t.
network response time:

max (d' + a') (6.3.1)It p(B + )

for the constituting sequences (r.)' and {a , j = 1,.., B. Let R1 denote the n-th response
time in the subnetwork at , 1 < I < K for the constituting sequences {r.}*) and {a} 0 , j c.

R1, = max (d, + a'), (6.3.2)
Itpa(B+1)

where pi(B + 1) denotes the queues of p(B + 1) which belong to V1. Owing to the parallel structure
of fl, we have

R. = max R1. (6.3.3)

o1f51w<hKv"

Let finally / denote the n-th response time in at for the constituting sequence {F,}' and
{o} *,j = I,.., B, defined by equations (6.1.1) and (6.1.2).

Corollary 15
For all n > 0

R,, >,I max R, (6.3.4
1:S !SK 

(6

Proof
It was established in the proof of Corollary 13 that

dJn < EdY,,161, n >0 =1,..,B (6.35
This and Jensen's Theorem can be used in (6.3.3) to yield

h'. :5 EIR'l6l, n > 0 1 = 1,..,K. (6 3 6)

Using now this last inequality and Jensen's Theorem in (6.3.4), we get

EIR,.IG) > max EIRIjG], n > 0. (63 7
-I<<K'

Combining equations (6.3.6) and (6.3.7), we finally obtain
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E[R, IGI > max R, n > 0, (6.3.8)

1<< K

which implies (6.3.4).

Remark

Notice that due to our mutual independence assumption on the sequences {u,,})0 , j = , B,

the sequences {R,,)-, I = 1,.., K are mutually independent as well. In other words, Corollary
14 allows us to derive lower bounds for the network response times that reduce to computing the

maximum of K independent RV's being the response times of subnetworks of smaller size than the
initial one.

Upper bounds can also be obtained using convex ordering in the following particular case: as-
sume the arrival process is divisible in the sense that there exist K mutually independent sequences

of RV's {t }0 which satisfy the mean condition:

r= K n > 0. (6.3.9)

Let dj (resp. A') denote the delay between the n-th arrival and the beginning of the n-th service
in queue j (resp. the n-th response time) in V1 for the constituting sequence {,"}' and {a},j =

1,.., B , .

Corollary 16

For all n > 0
R, <cs max A'. (6.3.10)

i<d<K

Proof

Let c0 be the sub a-algebra of F generated by the RV's {r,}- and {aJ}, j = 1,.., B. For all

0, We get from the exchangeability of the RV's and the independence assumptions that

for all n > 0,

ElP I]= rn. (6.3.11)

Using Jensen's inequality in

= x (6.3.12)

we get

El max T"' > max max (E[J~d'] + or". (6.3.13)1t5< K n, I- <l<K jevi

This together with Theorem 3 entail

El max 2!.J6J> max max(d' + a) = T,,, (6.3.14)
l<I<K -- l1(<K 1 I,

which completes the proof of (6.3.10).

Notice that for this upper bound too, the RV's P are mutually independent and can be
obtained by considering subnetworks of smaller dimensions than the initial one. Observe that if
{r.) and {a]}, j = 1,..,B ( resp. {f,} " and {a'})', j = 1,.., ) satisfy the conditions of

-130-



Theorem 2 for all j = I,..,B, the bounds of Corollary 15 ( resp. 16 ) then extend to stea:) statt.
namely,

"' ,ma ~ (6.3.15)
R >,max Ro

I<K '

and
Ro , max A'(316)

1<_<K

6.4 Bounds on series networks

Let 6 be any AFJQN made of K AFJQ subnetworks aI,..,QIK in series with respective underlying
graphs GI = (V, EI), 1 < I < K. Owing to the series structure of the network, the subnetworks
,t', 1 < I < K of fi obtained by considering only the queues of V, U..UV are also in the AFJQN
class. Let R , denote the n-th response time in j l for the constituting sequences {r,)00 and

0}, =1,..,B, j c VIU,..UVi. Let also t denote the n-th interdeparture time of the output
stream of .0":

t R,,+1 - R', n>O0. (6.4.1)

Owing to the series structure of #, R. can de decomposed into the sum:

K

R. n= >0 (6.4.2)

where pl denotes the n-th response time in the AFJQN at, for the interarrival times sequence
{ti-I) and the service times sequence {uo}", j in V and where to stands for r,, n > 0.

Similarly, let A,. denote the n-th response time in the AFJQN al, for the constituting sequences
{t'.')- and )-, j in V1, where

,, =E lt.,,, n > 0 (6.4.3)

&I. a2, j e V1, n >_0. (644)

Corollary 17
For all n > 0, the following inequality holds

K

EER,,] > EE ,,. (6.4.5)
i=1

Proof

Let (t be the sub a-algebra of F generated by the RV's {r,}' and {1,}) o , j = 1,.., B , j in
V U ... U Vx. Owing to the independence assumptions, we have Ifor all n > 0, 1 < I < K

E(t IG 1 I = Elt' (6.4.6)

and, for all j i V,

EIa'jG, = o,,,' c V. (6.47)
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Hence, Theorem 3 applied to the network al, entails that, for all n > 0, 1 < I < K

Ejp'ljij ? . (6 4 8)

This together with equation (6.4.2) readily entail (6.4.3).

Observe that (6.4.5) obviously holds at steady state provided the first moments involved in

this equation converge.

7 Applications of bounds based on association

The condition H, will be assumed to hold throughout the section so that the assumptions of
Lemma 7 and Theorem 12 are satisfied.

7.1 Bounds on parallel networks

The notations are those of section 6.3: R. ( resp. R,, ) denotes the n-th response time in 3
resp. a,, 1 < 1 < K ) for the constituting sequences {r,) and {a} j = 1,... . Under the

foregoing assumptions, we have the following strengthening of corollary 16

CoroUary 18

For all n > 0

I<I<K

Proof
It was established in Lemma 7 that the RV's {d,,)o, j = 1, .. , B. are associated. Hence, the RV's
R',, n > 0, 1 < I < K, which are given by (6.3.2) in terms of increasing functions of associated
RV's, are also associated, owing to property 2 of associated RV's. Equation (7.1.1) is hence a direct
consequence of property 5 (equation (5.1.2)) of association.

Assume the stability condition of Theorem 2 is satisfied. ( Observe that condition HI is
stronger than c-indition H0 . ) Then, the random vectors {d),}, j = 1,.., B converge weakly to a
finite random vector {d)}, j = 1,..,B when n goes to oo. This in turn implies that the random
vectors (R ), 1 = 1,.., K ( resp. the RV's R, ) converge weakly to a finite random vector ( resp
RV ) {R'}, I = 1,..,K ( resp. R. ) when n goes to oo.

Applying now proposition (1.2.3) of [St 841 to the weakly converging sequences df(R,) and 11l<1< K df( R')
it is plain that equation (7.1.1) extends to steady state, namely

df (R.o) :5.t f- df (M.). (7.1.2)

1<8:5K

The upper bounds of equation (7.1.2) and the lower bounds of equation (6.3.4) are examplified in

Figure 3.

7.2 More general bounds. Relation to resequencing

We consider now the case of more general AFJQN's. For these networks, we show that The-
orems 11 and 12 can be used to provide computable upper bounds which relate to resequencing

models analyzed earlier in [BGP 841. The discussion of these bounds will be limited to steady
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state. It is assumed that each queue satisfies the assumptions of Theorem 12, so that the distri-
bution functions D- ( resp. D,, *" - I,..,B converge weakly to a proper distribution function
DI (resp.b ) when n goes to oo and D <.t b) for all I < j < B. Denoting as E) ( resp
T- ) the common distribution function of the RV's (al}, j 1 I,..,B. ( resp. -{r,}), it follows
from equation (5.2.7) that the distribution functions D, j 1 1, .. , B satisfy the set of equations
(7.2.1)-(7.2.3) below:

DJ =U.(b ' V T-), (7.2.1)

for j such that p(j) = 0 and

D'= A'.(D) V T-),, (7.2.2)

for J such that p(j) $ 0, where

A,= " "•.V. (7.2.3)
,dp(. }

This set of functional equations can be solved recursively as follows:

First compute the solution bi, of equation (7.2.1) for all I < j <_ B 0 . This equation is
the functional -quation satisfied by the distribution function of the stationary waiting times in a
GI/GI/I queue with service times distributed according to EZ' and (negative) interarrival times
according to T-.

Next, compute by induction c as follows. Assume that the distribution functions
D,, are known for some j > BO. Notice first that this and equation (7.2.3) fully determine

the distribution function A' on R + . Hence, the only unknown in equation (7.2.2) is b) . This
equation is the functional equation satisfied by the distribution function of the stationary end-to-
end delays in a GI/GI/GI/1 resequencing queue as considered in [BGP 84] with desordering times
distributed according to A', sevice times distributed according to EV and (negative) interarrival
times according to T-.

The end of this section is devoted to computational problems related to the solution of thboe
functional equations. General techniques for solving (7.2.1) are weU known ( see for instance [Co
85] for a detailied discussion )

We consider now equation (7.2.2), the general form of which is

D = A.(D * E , T-), (7.2.4)

where A, E and T- are known distribution functions on R with their support on R+, R + and
R- respectively, C = E * T- has a negative mean and D is the unknown distribution function on
R . Closed form solutions have been derived for the solution of (7.2.4) in (BGP 84] for certain
classes of distribution functions A and T- namely A hyperexponential and T- exponential. For
more general classes of distribution functions, it is established in Appendix 3 that the following
numerical schema converges towards the solution of (7.2.1):

F ,+I(t) = A(.J F,(t - u)dC'(u), n >_ 0, t R, (7.2.5)

where C' = EJ * T_ and
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F'= A2 . (7.26)

Here, the functions F,(t), t c R are distribution functions on R with support on R* and the
convergence of F,, towards the solution of (7.2.1) has to be understood in the sense of the weak
convergence.

In conclusion, Theorems 11 and 12 provide a general method to compute upper bounds on
the stationary delays through AFJQN's with i.i.d. constituting sequences. The computation of
these bounds reduces to determining Bo stationary waiting time distribution functions of GJiGI/I
queues and B - B 0 stationary state end-to-end delays in GI/GI/GI/1 resequencing queues.

Appendix I

The basic idea for proving theorem 2 consists in generalizing the schema of Loynes for the
response time of a G/G/I queue ([Lo 621), to the response times d' of our network. Let us first
consider the sequence {r,,} and {a}' for all c e 1,B as the right half of certain bi-infinite
sequences {r,} and {a}+ on (flF, P). We shall assume that (fiF,P) is the canonical
space. Hence P will be assumed to be 9 -invariant (stationary) and 8-ergodic. Let us denote by
r the difference a, - ao, and by ai the variable a. Consider now the schema {6)})- defined by
6 = d, and for n 0:

+, o= maz( max ((6, + a') oO), 6.j + a' - r). (A.1.1)
- P(i)

Lernma

For any j B, the sequence {6 },,>o is increasing.

Proof
Let us first prove this for 1 < < B 0. It is clear that 61 > 0 = 68. Assume now that 6 > 6' for
some n > 1. From (A.1.1), we get

,+ o 8 =,max(0, 6, +o, -r) > ma(0, ,- +u-r) =6 o , 0 1 +j< Bo. (A.1 2

By induction, the 61, s are thus increasing.
Now consider j such that p(j) z6 0. By the induction hypothesis, we can assume that the RV's

61 are increasing in n for i e p(j). We prove first that 6j > 60. We have

5' oG = maz(max(61 +a')oG,6 +c' - r) > max + )oi) o )> max((60'+ a) o 0), (A 1 31
,,P() CPO) -,p(j,

where we have used our assumption R, > 6.. Notice that the last expression is 60 o 0 so that the
property is proved. Assuming now that 6, 3 _ by (A.1.1) we get

+ o0___maz(max((6,+ 1 - a) o9),6ni +' r)). (A 1 4)

Since the 61 are increasing for 1 ( p(j) we get from the last expression that
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oG 9 max((max(, +a') 00), P +a 2 
-

and so 6S increases in n.

Lernma 2

Let 6) be the limiting value of the increasing sequence 6) when n goes to infinity. Ur.der the

assumptions of theorem 2, 63 < oo. If there exists an t r(j) such that Elanl > Er,i then
cc =oo a.s.

Proof The limiting variables 6 satisfy the pathwise equation

6* oG = maz(max((b:. + o')o 0), 61 + a' - r) (A.1.6)

For I _j B Bo, (A.1.6) reduces to

61 o0 = max(0,6 + ' - r). (A.1.7)

Equation (A.1.7) shows that the event {6 = oo} is e-invariant. Therefore, this event is either

of probability 0 or 1. Assume that it is of probability 1. By the incresingness property we have

Elma(O, 6P3 + a - r) - 6b] = E[b ,1 o e - 1 = E[6'+ - 6' > 0. (A..)

From this we get

lim Elmax(o, 6, + a' - r) - l ! 0. (A. 1.9)

Using now Lebesgue's theorem, this inequality is preserved with limit taken inside the expectation.

If we assume that 63 T oo, then we get

EG'J _> E(r]. (A.1.10)

Now taking the contrapositive of this argument, we see that

E[,Jj < Eft !  (A.1. 11)

is sufficient to have 63 finite a.e. This completes the proof of the first part of the lemma for
1 j< Bo.

Let j be such that Bo < j < Bo. Assume now that for all i t jr(j), 6:. is a.e. finite and

integrable. The proof that condition (A.1.11) entails 6). finite a.e. proceeds as follows. The event

{6). = oo} is shown to be 8-invariant from (A.1.6). The inequality

limsup E(maz(mx((,',+, + ')o 9). n +a a - r) - 6b1l) ! 0 (A. 1. 12)

is then established using the increasingness of 6l and its integrability as in (A.1.8). One also gets
from elementary manipulations that
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= (m'z(m,-(Qi:, + a')o1.6, +' - r) - , (max (( 1 )-aj oO)-- '- a . (A.1.13)

ZFrom the increasingness of 6',, p( we get hence

X, < (max((; + a')o 0) +c1 - r. (A.1.14)

Owing to the integrability assumptions, it follows from (A.1.14) that the The RV's X, are uniformly
bounded from above by an integrable RV. The Fatou-Lebesgue lemma and (A.1.12) entail then

Ellimrsup X, _> limsup E'Xj _0. (A.1.13)

Under the assumption 8:. < co a.e. for all i c r(j), the hypothesis 64 T cx implies that

limsupX, = a - r, (A1.16)

so that queue j satisfies condition (A.1.10). The rest of the proof follows exactly as before.

Proof of Theorem 2

We get by induction that d- =-, o V' (use the fact r, = r o on, = o 0 , n > 0). Hence d-1
and bl have the same distribution due to the 0-invariance of P. The weak convergence of the law
of d' to a proper distribution is now a direct consequence of the increasing a.e. of 61 to the finite
random variable 6.

Appendix 2

1 - A stationary queueing system where an increased variability of interarrivals decreases the vari-
ability of interdeparture times.

Consider a G/M/I queue. The steady state distribution for the number of customers just after a
departure is geometrically distributed with parameter a which is the smallest positive real root of
the equation

A (p(1 - a)), (A .2.1)

where A' denotes the Laplace transform of the interarrival times and ji-, the mean service time.
The interdeparture distribution function has hence the following Laplace transform

D'(s) = (1 - a)Zk>iuk ICA +(1- a)A'(s)- - -  (A.2.2)

= (1 - ,)A*(s)- - + ' -u--" (A.2.3)
+SJA+ + 3

The mean interdeparture time is hence
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d= +( (A.2.4)

where denotes the mean interarrival time. ConsSIt.r the two cases where A' is exponential and
deterministic with the same mean A

(A.2.5)

A;(s) = ezp(- ). (A.2.6)

The distribution function corresponding to A; is larger for convex ordering than the one corre-
sponding to A;. However, a, > a 2 so that di < d2 .

2 - A stationary queueing system where an increased variability of interarrival increases the vari-
ability of interdeparture times.

Consider a stable D/D/I queue. Let A denote the intensity of the arrival process. The sta-
tionary interdeparture times have deterministic distribution with mean A-'. Here, an increased
variability of interarrivals increases the variability of interdeparture times.

Appendix 3

In this section, weak convergence of distribution functions on R will be denoted as =:. We
establish first that under the assumptions of Theorem 12

Di => Di (A.3.1)

and

ft =*.D-0'0(A.3.2)

when n goes to o, where D and DI are proper distribution functions on R + . We establish the
convergence (A.3.2) first. The property is first proved for j such that p(j) = e. For such aj,
represents the distribution function of the n-th waiting time in a GI/GI/I FIFO queue and classical

results in queueing theory [Co 85 can be used to establish (A.3.1) provided Eju-l < Ejr ].
The convergence (A.3.2) is now established by induction for all B0 :5 j :5 B. Assume queues

.. ,j - I to be in steady state for some j such B0 <j < B. Then equations (5.2.6) and (5.2.7)
read respectively

0 Aj =(A.3.3)

and

D+ = A.( . E * T-), n > 0, (.4.3.4)

where

A J D *E'. (A.3.5)
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Let a))' , (a'}_ and (r,0o be independent sequences of i.,.d. RV's with respective di,.-

tribuuon functions A', E' and T. Consider the R+-valued Markov chain {y,,)0 defined by the
recursion

y = max(a+ 1, y. + a) - r,), n > 0, (A 3.G)

where

yg = og.(A.3.7)

Using the independence assumptions, it is plain from (A.3.3)-(A.3.5) that df(yJ) = D for all
n > 0.

Denote a, a' and r0 as ol, ai and r respectively. Using the same formalism as in Appendix 1,
define the Loynes' schema {z,)- by the recursion

zn+, o8 = max(&oO, zJ, + - r), n > 0, (A.3.8)

where

One proves as in Appendix 1 that z" increases pathwise with n, z, =.t yy for all n > 0 and

o8- z1<aJ o+o' -r. (A.3.10)

The integrability assumptions are then used in (A.1.10) to prove that the RV's (z,} are bounded
from above by an integrable RV. The remainder of the proof is as in Appendix 1.

The numerical schema (7.2.5)-(7.2.6) is a mere rephrasing of equations (A.3.3)-(A.3.5), so that
its convergence towards the solution of (7.2.1) is a direct consequence of (A.3.2).

We prove now the convergence (A.3.1). It was established in Theorem 11 that under the
assumption H 2

Dj <.t, bi, n > 0, --1, B. (A.3.11)

It follows from the discussion of Appendix I that

Di = df(6.), n > 0, j = 1,B. (A.3.12)

Hence, the convergence (A.3.2) of by towards a finite distribution function used in (A.3.1 1) entails
that the increasing sequence 67 cannot converge to co almost surely, which establishes (A.3.1).
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FIGURE I
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